Single Channel LED Current Source Controller

General Description

The RT9052 is a low cost, single channel LED current source controller with a specific FAULT detector. The part can drive an external NPN-BJT for various applications. The RT9052 is operated with Vcc power ranging from 3.8V to 13.5V. With such a topology, it's very flexible and cost effective.

The RT9052 comes in a small SOT-23-6 package.

Ordering Information

RT9052

-Package Type E : SOT-23-6

Lead Plating System

Note :

Richtek products are :

 RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

G : Green (Halogen Free and Pb Free)

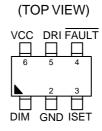
• Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

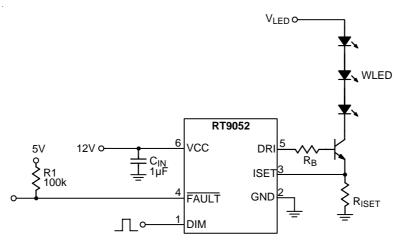
EU=DNN

EU= : Product Code DNN : Date Code

Typical Application Circuit


Features

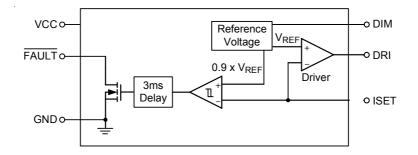
- 3.8V to 13.5V Operation Voltage
- Voltage Reference 0.8V with ±2% High Accuracy
- FAULT Indicator with Delay
- Dimming Control by PWM
- Small Footprint Package SOT-23-6
- RoHS Compliant and Halogen Free


Applications

- LED Backlight applications
- Current Source
- Transistor Driver

Pin Configurations

SOT-23-6



Functional Pin Description

Pin No.	Pin Name	Pin Function	
1	DIM	PWM Dimming Control Input.	
2	GND	Ground.	
3	ISET	Current Setting Input.	
4	FAULT	FAULT Signal Open Drain Output.	
5	DRI	Driver Output.	
6	VCC	Power Supply Input.	

Function Block Diagram

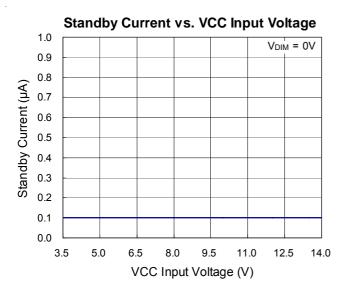
Absolute Maximum Ratings (Note 1)

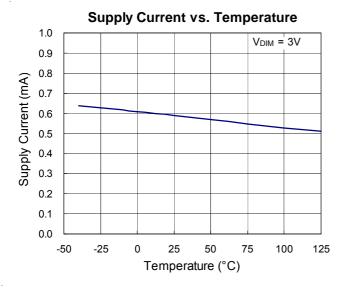
Supply Input Voltage, V _{CC}	
DIM Voltage	7V
FAULT Output Voltage	7V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
SOT-23-6	0.4W
Package Thermal Resistance (Note 2)	
SOT-23-6, θ _{JA}	250°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Mode)	2kV
MM (Machine Mode)	200V

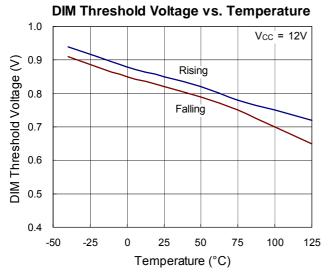
Recommended Operating Conditions (Note 4)

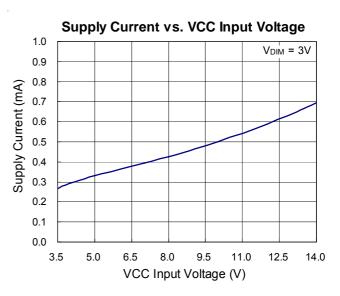
Supply Input Voltage, V _{CC}	- 3.8V to 13.5V
DIM Voltage	- 0V to 5.5V
Junction Temperature Range	- –40°C to 125°C
Ambient Temperature Range	- –40°C to 85°C

Electrical Characteristics

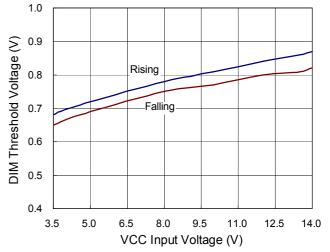

(V_{CC} = 5V/12V, T_A = 25°C, unless otherwise specified)

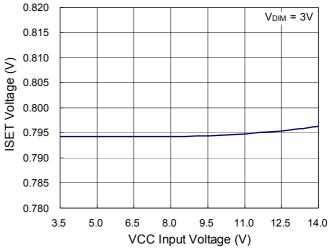

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
UVLO Threshold		Vcc Rising	3.15	3.4	3.65	V
UVLO Hysteresis			0.1	0.2	0.3	V
Vcc Supply Current	Icc	Vcc = 12V		0.3	0.8	mA
Driver Source Current		Vcc = 12V, Vdri = 6V	5			mA
Driver Sink Current		Vcc = 12V, Vdri = 6V	5			mA
ISET Reference Voltage	VREF	Vcc = 12V, Vdri = 5V	0.784	0.8	0.816	V
ISET Line Regulation		Vcc = 4.5V to 13.5V		3	6	mV
Amplifier Voltage Gain		Vcc = 12V, No Load		70		dB
FAULT Rising Threshold		Vcc = 12V	85	90	95	%Vref
FAULT Hysteresis		Vcc = 12V		15		%Vref
Sink Capability		Vcc = 12V @ 1mA		0.2	0.4	V
Delay Time	t _{DELAY}	Vcc = 12V	1	3	10	ms
Falling Delay		Vcc = 12V		15	20	μs
DIM						
DIM Rising Threshold	DIM _{th}	Vcc = 12V		0.7	1	V
DIM Hysteresis		Vcc = 12V		30		mV
Standby Current	ISTANDBY	VCC = 12V, VDIM = 0V			5	μA

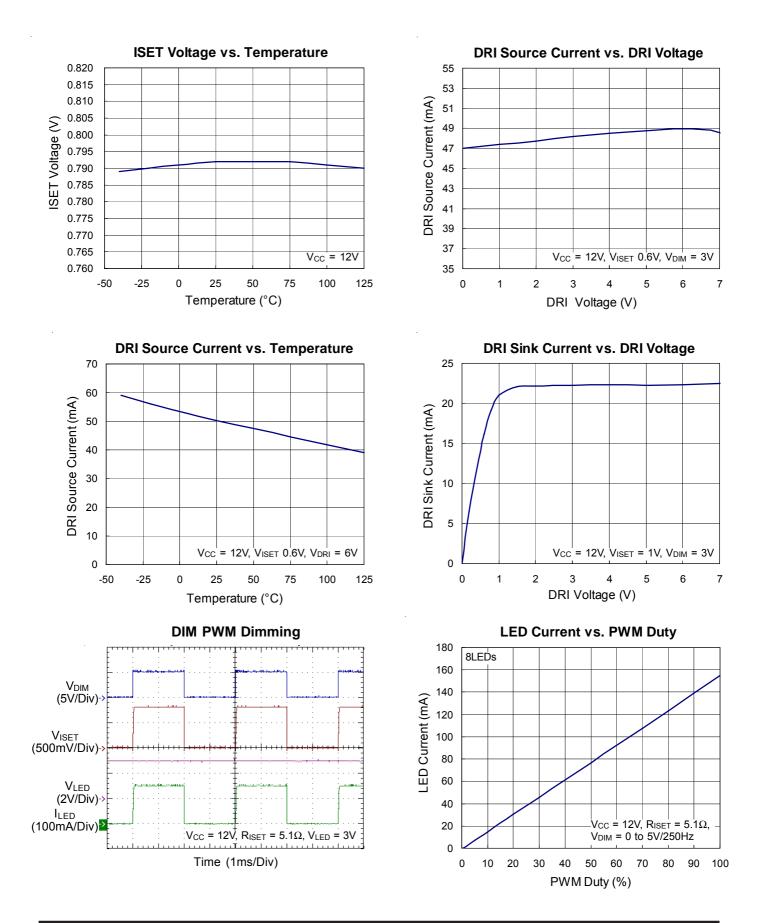

RT9052


- **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. θ_{JA} is measured in natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics






DIM Threshold Voltage vs. VCC Input Voltage

ISET Voltage vs. VCC Input Voltage

RT9052

Application Information

The RT9052 is a low cost single channel LED current source controller with a specific FAULT indicating scheme. This device can drive an external NPN-BJT for various applications. The RT9052 is operated with VCC power ranging from 3.8V to 13.5V. With such a topology, it is very flexible and cost effective.

Capacitors Selection

Careful selection of the external capacitors for the RT9052 is necessary to maintain high stability and performance. A capacitor $\geq 1\mu$ F must be connected between VCC and ground to improve supply voltage stability for proper operation.

FAULT Function

The RT9052 has a FAULT function with delay. The FAULT output is an open drain output. Connect a $100k\Omega$ pull up resistor to external 5V source to obtain an output voltage. When the ISET voltage reaches 90% of normal value, FAULT will become active and be pulled high by external circuits with a typical 3ms delay.

LED Current Setting

The RT9052 includes a 0.8V reference voltage for easy setting of the LED current source. As shown in application circuit, the LED current is easily set via an R_{ISET} resistor.

$$I_{\text{LED}} = \frac{0.8 \, (\text{V})}{\text{R}_{\text{ISET}} \, (\Omega)} \tag{A}$$

PWM Dimming Operation

For controlling the LED brightness, the RT9052 can perform dimming control by applying a PWM signal to the DIM pin. The average LED current is proportional to the PWM signal duty cycle. Note that the magnitude of the PWM signal needs to be higher than the maximum dimming voltage of the DIM pin, in order to have correct dimming control.

NPN Transistor Selection

The RT9052 drives the NPN transistor via the DRI pin (source Base current I_{B}). When making an NPN transistor

selection, the following criteria Should be considered : DC current gain h_{FE} , threshold voltage V_{BE} , collectoremitter voltage V_{CE} , maximum collector current IC package thermal resistance $\theta_{(JA)}$.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications of the RT9052, the maximum junction temperature is 125°C and T_A is the ambient temperature. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For SOT-23-6 packages, the thermal resistance, θ_{JA} , is 250°C/W on a standard JEDEC 51-3 single-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})}$ = (125°C - 25°C) / (250°C/W) = 0.400W for SOT-23-6 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . For the RT9052 package, the derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

RT9052

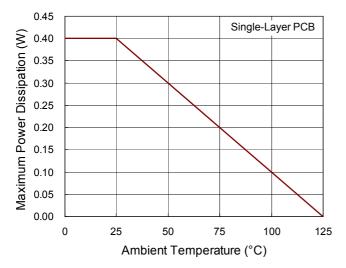


Figure 1. Derating Curve for RT9052 Package

Layout Consideration

There are three critical layout considerations.

- The current setting resistor should be located as close as possible to the RT9052 to avoid inducing any noise.
- The input capacitor have to put at near the IC for improved performance.
- The pass element operating under high power situation may raise the junction temperature above the package thermal resistance limit. (copper area can be added to improve power dissipation.)

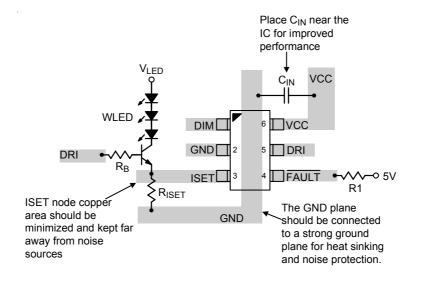
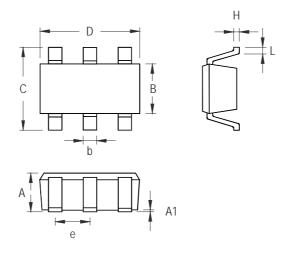



Figure 2. PCB Layout Guide

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Мах	Min	Max	
А	0.889	1.295	0.031	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-6 Surface Mount Package

Richtek Technology Corporation

Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing) 5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)86672399 Fax: (8862)86672377 Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.