

DS3170DK DS3/E3 Single-Chip Transceiver Design Kit

www.maxim-ic.com

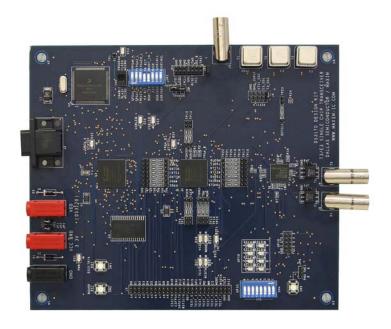
GENERAL DESCRIPTION

The DS3170DK is a fully integrated design kit for the DS3170 DS3/E3 single-chip transceiver (SCT). This design kit contains all the necessary circuitry to evaluate the DS3170 in all modes of operation. The design kit also includes an on-board microprocessor to run real-time code for further part evaluation.

DESIGN KIT CONTENTS

DS3170DK Board Download:

ChipView Software
DS3170DK.DEF Definition File
DS3170DK Data Sheet


ORDERING INFORMATION

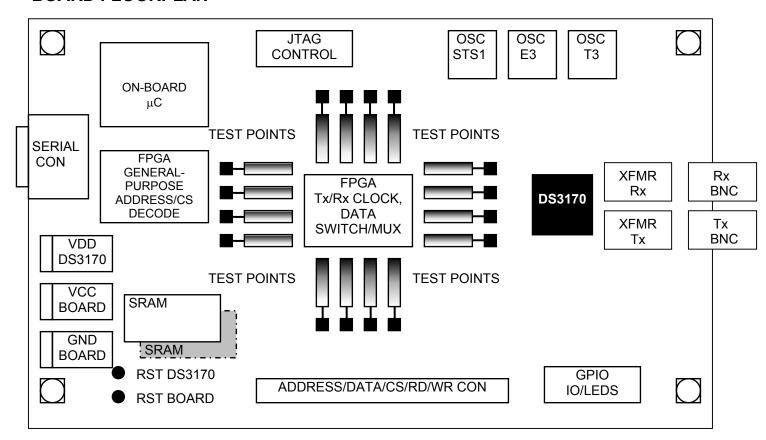
PART	DESCRIPTION
DS3170DK	Design Kit for the DS3170 DS3/E3
	Single-Chip Transceiver

Windows is a registered trademark of Microsoft Corp.

FEATURES

- Expedites New Designs by Eliminating First-Pass Prototyping
- Demonstrates Key Functions of the DS3170 DS3/E3 Single-Chip Transceiver (SCT)
- Includes DS3170 Single-Chip Transceiver (SCT), Transformers, 75Ω BNC, and Termination Passives
- Interfaces with Any PC with an RS-232 Serial Interface
- High Level Windows®-Based Software Provides Visual Access to All Registers
- Software Controlled (Register) Mapped Configuration Switches Facilitate Real-Time Clock and Signal Routing
- Precision Test Points for All Clocks and Signals
- On-Board DS3 and E3 Crystal Oscillators for Stable Clock Generation
- Easy-to-Read Silkscreen Labels Identify the Signals Associated with All Connectors, Jumpers, and LEDS

1 of 40 REV: 091205


COMPONENT LIST

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
C1, C4, C5, C10, C14, C15, C18, C19, C21, C24, C25–C32, C36- C38, C39–C44, C47–C49, C50, C52–C56, C59–C61, C66, C68, C70, C73, C74	44	0.1μF 20%, 16V X7R ceramic capacitors (0603)	AVX	0603YC104MAT
C2, C3, C16, C17, C20, C22, C23, C33, C34, C51, C57, C69, C75	13	1μF 10%, 16V ceramic capacitors (1206)	Panasonic	ECJ-3YB1C105K
C6, C62, C65	3	0.001μF 10%, 50V ceramic capacitors (0603)	Panasonic	ECJ-1VB1H102K
C7, C8, C9, C11, C35, C58, C76	7	68μF 20%, 16V tantalum capacitors (D case)	Panasonic	ECS-T1CD686R
C12, C13	2	10pF 5%, 50V ceramic capacitors (tall case)	Phycomp	1206CG100J9B200
C45, C46	2	10,000pF 10%, 16V ceramic capacitors (0603)	Panasonic	ECJ-1VB1C103K
C63, C64, C67	3	0.01μF 10%, 50V X7R ceramic capacitors (0603)	AVX	06035C103KAT
C71, C72	2	56,000pF 10%, 16V ceramic capacitors (0603)	Panasonic	ECJ-1VB1C563K
D1, D2	2	1A 50V general-purpose silicon diodes	General Semiconductor	1N4001
DS1, DS2, DS6-DS10	7	LED, green, SMD	Panasonic	LN1351C
DS3, DS4, DS5, DS11-DS19	12	LED, red, SMD	Panasonic	LN1251C
J1, PWR_CONNBAN1	2	Banana plug sockets (horizontal, black)	Mouser Electronics	164-6218
J2	1	DB9 right-angle connector (long case)	AMP	747459-1
J3	1	50-pin, dual-row, vertical terminal strip	Samtec	TSW-125-07-T-D
J4	1	100-mils 4-position jumper	Samtec	NA
J5	1	50Ω BNC connector (5-pin right-angle header)	Trompeter	CBJR220
J6, J7	2	Terminal strip, 10-pin, dual row, vertical	Samtec	NA
J8, J9	2	75Ω BNC connectors (5-pin rightangle)	Trompeter	UCBJR220
JP1, JP2, JP3, JP5, JP7, JP8	6	2-pin headers, 0.100" centerline (vertical)	Samtec	TSW-102-07-T-S
JP4	1	14-pin connector (dual row, vertical)	Samtec	NA
JP6	1	100-mils 3-position jumper	Samtec	NA
L1	1	1.0μH 20% 2-pin surface-mount inductor	Coiltronics	UP1B-1R0
PWR_CONNBAN2	1	Banana plug socket (horizontal, red)	Mouser Electronics	164-6219

		I		
DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
R1–R4, R12, R42, R43, R54–R56, R59, R63, R68, R69, R70, R73, R74, R83, R93, R107	20	150Ω 1%, 1/16W resistors (0603)	Panasonic	ERJ-3EKF1500V
R5–R8, R10, R15, R51, R57, R62, R71, R81, R85, R92, R94, R95, R100, R101, R103–R106, R109	22	33Ω 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ330V
R9, R11, R16, R22, R30, R32, R38, R46, R60, R61, R64, R65, R72, R77–R80, R89, R90, R91, R96	22	330 $Ω$ 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ331V
R13	1	1.0MΩ 5%, 1/16W resistor (0603)	Panasonic	ERJ-3GEYJ105V
R14, R17–R21, R23–R29, R31, R33–R37, R39, R40, R41, R44, R45, R47, R48, R49, R52, R53, R58, R67, R75, R76, R82, R86, R87, R98, R99, R102, R108, R110	41	10kΩ 5%, 1/16W resistors (0603)	Panasonic	ERJ-3GEYJ103V
R50	1	1.0kΩ 5%, 1/16W resistor (0603)	Panasonic	ERJ-3GEYJ102V
R66, R88, R97	3	0Ω 1%, 1/16W resistors (0603)	AVX	CJ10-000F
R84	1	51.1Ω 1%, 1/16W resistor (0603)	Panasonic	ERJ-3EKF51R1V
SW1, SW2, SW5	3	4-pin single-pole switch MOM	Panasonic	EVQPAE04M
SW3, SW4	2	8-position switch, 16-pin DIP, low profile	AMP	435668-7
SW6	1	Slide switch (DPDT) 6-pin through-hole	Тусо	SSA22
T1, T2	2	1:2 XFMR T3/E3/STS-1 (industrial)	Pulse	T3012
TP1-TP24	24	Test points, compensated, 3pF, 953 Ω , 3 plated holes	NA	KIT1
U1, U5	2	8-pin power-μMAX (1.8V or Adj)	Maxim	MAX1792EUA18
U2	1	M-CORE 32-bit microcontroller	Motorola	MMC2107
U3, U6	2	Spartan-IIE 200K gate, 1.8V FPGA, 256 PIN BGA	Xilinx	XC2S200E-6FT256C
U4, U11	2	128K x 8 SRAM	Cypress	CY62128V
U7	1	DS3/E3 SCT 100-pin CSBGA (11mm x 11mm)	Dallas Semiconductor	DS3170
U8	1	3.3V RS-232 20-pin SO	Maxim	MAX3233EEWP
U9, U14, U16– U20, U23	8	High-speed buffer	Fairchild	NC7SZ86

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART NUMBER
U10, U12	2	2Mb flash-based configuration memory	Xilinx	XCF02SV020C
U13	1	Quad 2-input NAND gate 14-pin SO	Toshiba	TC74HC00AFN
U15, U21, U24	3	Hex inverter, SO	Toshiba	TC74HC04AFN
U22	1	SOT switch debouncer	Maxim	MAX6816
X1	1	8.0MHz low-profile crystal	Dove Electronic	EC1-8.000M
Y1	1	3.3V 51.840MHz oscillator, crystal clock	SaRonix	NTH089AA3-51.840
Y2	1	3.3V 34.368MHz oscillator, crystal clock	SaRonix	NTH089AA3-34.368
Y3	1	3.3V 44.736MHz oscillator, crystal clock	SaRonix	NTH089AA3-44.736

BOARD FLOORPLAN

BASIC OPERATION

This design kit relies upon several supporting files, which are available for downloading on our website at www.maxim-ic.com/telecom. See the DS3170DK QuickView page for files.

The support files are used with an evaluation program called ChipView with is available for download at www.maxim-ic.com/telecom.

HARDWARE CONFIGURATION

Quick Start (Hardware Settings)

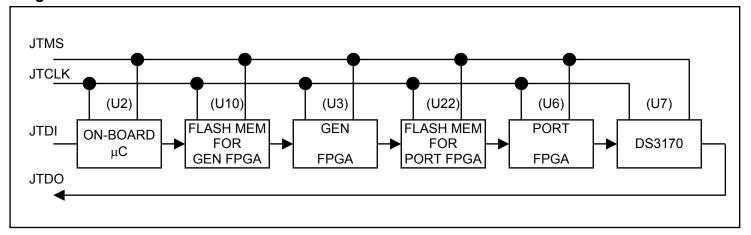
- For single power-supply operation, short jumpers JP1-JP3. This connects VDD of the DS3170 to the board VCC.
- Ensure that PROGRAM FLASH MICRO is selected (SW6). DS3 should not be on.
- Connect reference clock. See <u>Table 1</u>.
- DIP switches (SW3) can be in either the ON or OFF position depending on the desired configuration. See Table 6..
- Connect serial cable from DS3170DK (J2) to PC.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V.

Reference Clock Configuration

The reference clock for the DS3170 (SCT) can be configured a number of ways depending on the application's need. This is done by shorting the REFCLK signal on J6 to the signal inputs, which are also connected to J6.

Table 1: Reference Clock Configuration

REFERENCE CLOCK	DESCRIPTION
GND	Short pins J6.1 and J6.2 together. Open all other pins on J6.
BNC Input	Short pins J6.3 and J6.4 together. Open all other pins on J6.
STS1 OSC	Short pins J6.5 and J6.6 together. Open all other pins on J6.
E3 OSC	Short pins J6.7 and J6.8 together. Open all other pins on J6.
T3 OSC	Short pins J6.9 and J6.10 together. Open all other pins on J6.


JTAG Configuration

The JTAG chain is controlled by the following connectors: J4, JP4, and JP5. Depending on the function, such as programming the internal microcontroller flash or performing boundary scan operations, the three connectors can be configured to accomplish the desired task. For information on programming the internal flash of the microcontroller, refer to the microcontroller user manual and board schematic.

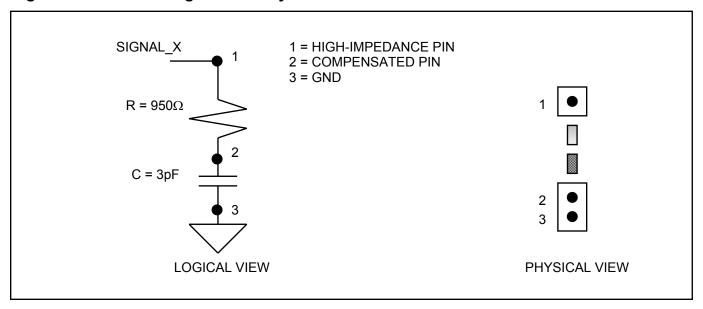
For most purposes, having the complete JTAG chain is sufficient. Figure 1 shows the complete chain as well as what order the devices will appear during boundary scan. To set up this configuration, perform the following:

- Connect JTDI to JP4.1
- Connect JTDO to JP4.3
- Connect JTMS to JP4.10
- Connect JCLK to JP4.5
- Connect J4.1 to J4.2
- Connect J4.3 to J4.4
- Connect JP5.1 to JP5.2

Figure 1. JTAG Chain

Address/Data BUS Connector

The DS3170DK has a connector (J3) to monitor all local bus activity for the design kit. All the signals can be captured with a high-impedance probe and displayed on an oscilloscope or logic analyzer. **Note:** If FPGA_ENABLE (SW3.3) is logic 0, the on-board microcontroller will no longer drive any data onto the local bus. Therefore, the user can now connect the local bus of the DS3170 into another system without making any modifications to the hardware. See Table 2 for specific pin information for connector J3.


Table 2. Address/Data Connector

PIN NUM	PIN NAME	DESCRIPTION	PIN NUM	PIN NAME	DESCRIPTION
1	A0	Local Address Bit 0	2	D0	Local Data Bit 0
3	A1	Local Address Bit 1	4	D1	Local Data Bit 1
5	A2	Local Address Bit 2	6	D2	Local Data Bit 2
7	A3	Local Address Bit 3	8	D3	Local Data Bit 3
9	A4	Local Address Bit 4	10	D4	Local Data Bit 4
11	A5	Local Address Bit 5	12	D5	Local Data Bit 5
13	A6	Local Address Bit 6	14	D6	Local Data Bit 6
15	A7	Local Address Bit 7	16	D7	Local Data Bit 7
17	A8	Local Address Bit 8	18	D8	Local Data Bit 8
19	A9	Local Address Bit 9	20	D9	Local Data Bit 9
21	CS3170	Chip Select DS3170	22	D10	Local Data Bit 10
23	CSFPGA	Chip Select Port FPGA	24	D11	Local Data Bit 11
25	INT3170	INT PIN DS3170	26	D12	Local Data Bit 12
27	RST3170	RST PIN DS3170	28	D13	Local Data Bit 13
29	RDY	Ready Handshake DS3170	30	D14	Local Data Bit 14
31	TEST0	Generic I/O Bit 0	32	D15	Local Data Bit 15
33	TEST1	Generic I/O Bit 1	34	SPI	DS3170 Serial/Parallel Bus Mode
35	TEST2	Generic I/O Bit 2	36	ALE	Address Latch Enable
37	TEST3	Generic I/O Bit 3	38	RD_DS	Read (Intel)/Data Strobe (MOT)
39	TEST4	Generic I/O Bit 4	40	WR_W/R	Write (Intel)/Write_READ (MOT)
41	TEST5	Generic I/O Bit 5	42	CS_OUT	Programmable CS_OUT Pin
43	TEST6	Generic I/O Bit 6	44	MODE	Mot/Intel Mode
45	TEST7	Generic I/O Bit 7	46	WIDTH	Data Bus Width
47	GND	GND	48	TEST	Test Enable (Active Low)
49	GND	GND	50	HIZ	High Impedance (Active Low)

High Impedance and Compensated Test Points

The test points for all the clock and data lines are unique for this board such that each test point listed in <u>Table 3</u> have a relative high-impedance pin and a compensated pin. The compensated pin is part of a (20:1) voltage divider that when used with the standard 50Ω load of an oscilloscope provides a very clean signal. If you are making critical timing and or slew rate measurements, the compensated test points are very useful. <u>Figure 2</u> shows the relationship between the high-impedance and compensated test point pins.

Figure 2. Test Point Logical and Physical View

Table 3. Test Points

REF DES	SIGNAL NAME	REF DES	SIGNAL NAME
TP5	TCLKI	TP7	TNEG
TP6	TCLKO	TP8	RNEG
TP4	RCLKO	TP2	TPOS
TP20	TLCLK	TP3	RPOS
TP19	RLCLK	TP11	TSER
TP10	TOHSOF	TP9	RSER
TP12	ROHSOF	TP13	TOHEN
TP16	TOHCLK	TP14	TOH
TP17	ROHCLK	TP15	ROH
TP19	TSOFO	TP23	REFCLK
TP22	RSOFO	TP21	TSOFI

General Purpose Input/Output for DS3170

The DS3170 SCT has an 8-bit port that can be bit configured as either general-purpose I/O or specific alarms, a TEMI input, or PMU input. Refer to the DS3170 data sheet for specific questions about the operation of the DS3170 GPIO port.

Each GPIO pin has two types of inputs and an LED for easy identification of the pin's state. The first input type for the GPIO port is an 8-bit switch (SW4). Each pin on SW4 corresponds to the bit in the GPIO. When the switch is in the "On" position, the pin for the switch is grounded and provides logic 0 to the port. When the switch is in the "Off" position, the pin for the switch floats to VDD and provides logic 1 to the port.

The second input type for the GPIO port is a straight 10-pin header (J7). This can be simply a monitoring pin for the GPIO port or used as input stimulus. **Note:** If you plan to drive a bit to a value other than GND, the GPIO bit in SW4 must be in the "Off" position. See the DS3170DK schematic for questions on the connection of the GPIO port.

Table 4 provides a description of pin out of SW4 and J7.

Table 4. GPIO Header and Switch Pinout

PIN NUMBER		PIN NAME
SW4.1	J7.1	GPIO Bit 1
SW4.2	J7.2	GPIO Bit 2
SW4.3	J7.3	GPIO Bit 3
SW4.4	J7.4	GPIO Bit 4
SW4.5	J7.5	GPIO Bit 5
SW4.6	J7.6	GPIO Bit 6
SW4.7	J7.7	GPIO Bit 7
SW4.8	J7.8	GPIO Bit 8

TEMI and PMU Inputs

GPIO Bit 6 and GPIO Bit 8 can be configured to be the TEMI and PMU inputs respectively. A pushbutton (SW5) and 3-position jumper (JP6) are available to provide a glitch-free input to either of these inputs. **Note:** When using the pushbutton (SW5) and 3-position jumper (JP6) as an input to the GPIO pins, you must have the appropriate switch in SW4 in the "Off" position.

Table 5. TEMI and PMU Configuration

SIGNAL NAME	SETUP PROCEDURE
TEMI	Set SW4.6 to the "Off" position
I EIVII	Short (Jumper) JP6.3 and JP2
PMU	Set SW4.8 to the "Off" position
	Short (Jumper) JP6.1 and JP2

User Input Switch (SW3)

SW3 is an 8-pin DIP switch that controls the function of the on-board microcontroller and the two on-board FPGAs, and offers a number of generic inputs for user programs.

Table 6. User Input Switch Pinout

PIN	NAME	FUNCTION
1	FPGA INPUT 1	Generic Input-Only Pin to the General-Purpose FPGA. Value of pin is copied to general-purpose register XXXXXXXXX. Can be used for user programs. This pin has no effect if FPGA ENABLE is logic 0.
2	FPGA INPUT 2	Generic Input-Only Pin to the General-Purpose FPGA. Value of pin is copied to general-purpose register XXXXXXXXX. Can be used for user programs. This pin has no effect if FPGA ENABLE is logic 0.
3	FPGA ENABLE	Input-Only Pin to the General-Purpose FPGA (U3). When this pin is logic 1 (SW3.3 is OFF), the FPGA is enabled and will transfer data from the DS3170 and FPGA as directed from the on-board microcontroller. When this pin is logic 0 (SW3.3 is ON), the FPGA is disabled. All inputs and outputs to the DS3170 and port FPGA are tri-stated. Note: This pin does not cause a hardware enable for the PORT FGPA.
4	DATA BUS SELECT	Input-Only Pin to the General-Purpose FPGA (U3). When this pin is logic 1 (SW3.4 is OFF), the DS3170 and the port FPGA are set up such that they use the 16-bit bus from the on-board microcontroller. When this pin is logic 0 (SW3.4 is ON), the DS3170 and the port FPGA are set up such that they use the 8-bit bus from the on-board microcontroller. This pin has no effect if FPGA ENABLE is logic 0.
5	BOOT SEL	Input-Only Pin to the On-Board Microcontroller. When this pin is logic 1 (SW3.5 is OFF), the on-board microcontroller loads the firmware from an external source rather than the internal flash bank. When this pin is logic 0 (SW3.5 is ON), the microcontroller loads the firmware from the internal flash bank. If you choose to load code from an external source, refer to the user manual for the on-board microcontroller (U2) to ensure that all the timing and data are correct to run this program. This option should only be used by the advanced user.
6	KIT	Input-Only Pin to the On-Board Microcontroller. Not implemented with the firmware shipped from Dallas Semiconductor. This pin can be used by a user program.
7	USER INPUT 1	Input/Output Pin to the General-Purpose FPGA (U3). This pin has an LED (DS4) to track the value of this signal. This pin has no effect if FPGA ENABLE is logic 0. Note: If you choose to use this as an output, USER INPUT 1 (SW3.7) must be in the off position.
8	USER INPUT 2	Input/Output Pin to the General-Purpose FPGA (U3). This pin has an LED (DS5) to track the value of this signal. This pin has no effect if FPGA ENABLE is logic 0. Note: If you choose to use this as an output, USER INPUT 1 (SW3.8) must be in the off position.

SOFTWARE CONFIGURATION

Quick Start (Software—ChipView)

- Perform steps in the Quick Start (Hardware Settings).
- Load ChipView software.
- Select COM port.
- Select Register View.
- From the Programs menu, launch the host application named ChipView.EXE. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.
- Load the DS3170DK.DEF file.
- Make sure that all the register settings are correct for the proper function desired for the DS3170DK.
- Refer to the DS3170 data sheet for all questions pertaining to device functionality.

MEMORY MAP

The on-board microcontroller is configured to start the user address space at 0x81000000. All offsets given in Table 7 are relative to the beginning of the user address space. All device registers can be easily modified using ChipView.EXE host-based user-interface software.

Table 7. Relative Address Map

REF DES	DEVICE	OFFSET
U3	General-purpose FPGA	0x0000
U6	FPGA Tx/Rx clock, data switch/mux	0x1000
U7	DS3170 DS3/E3 single- chip transceiver	0x2000

Table 8. General-Purpose Memory Map

OFFSET	REGISTER NAME	TYPE	DESCRIPTION
0x00	BRDID	Read Only	Board ID
0x02	DSIDH	Read Only	Dallas Extended ID Upper Nibble
0x03	DSIDM	Read Only	Dallas Extended ID Middle Nibble
0x04	DSIDL	Read Only	Dallas Extended ID Lower Nibble
0x05	BRDREV	Read Only	Board Rev
0x06	ASMREV	Read Only	Assembly Rev
0x07	FPGAREV	Read Only	FPGA Firmware Rev
80x0	CTRL1	Control	Control Reg #1

ID REGISTERS

BID: BOARD ID (Offset=0X0000)

BID is read only with a value of 0xD.

XBIDH: HIGH NIBBLE EXTENDED BOARD ID (Offset=0X0002)

XBIDH is read only with a value of 0x00.

XBIDM: MIDDLE NIBBLE EXTENDED BOARD ID (Offset=0X0003)

XBIDM is read only with a value of 0x07.

XBIDL: LOW NIBBLE EXTENDED BOARD ID (Offset=0X0004)

XBIDL is read only with a value of 0x00.

BREV: BOARD FAB REVISION (Offset=0X0005)

BREV is read only and displays the current fab revision.

AREV: BOARD ASSEMBLY REVISION (Offset=0X0006)

AREV is read only and displays the current assembly revision.

PREV: PLD REVISION (Offset=0X0007)

PREV is read only and displays the current PLD firmware revision.

CONTROL REGISTERS

Register Name: CTRL1

Register Description: Control Register 1

Register Offset: 0x0008

Bit# 7 6 5 4 3 2 1 0 SPI CPOL SPI CPHA SPI SWAP SPI HIZ WIDTH MOT MUX Name Default 0 0 0 0 0 1 0 0

Bit 7: SPI CPOL: This bit controls the SPI Interface Clock Polarity pin, which is muxed with the D7 pin on the

DS3170. Bit 7 is only active when bit 4 (SPI) is a logic 1. Refer to the DS3170 data sheet

for pin operation.

Bit 6: SPI_CPHA: This bit controls the SPI Interface Clock Phase pin, which is muxed with the D6 pin on the

DS3170. Bit 6 is only active when Bit 4 (SPI) is a logic 1. Refer to the DS3170 data sheet

for pin operation.

Bit 5: SPI_SWAP: This bit controls the SPI Interface Bit Order Swap pin, which is muxed with the D5 pin on

the DS3170. Bit 5 is only active when Bit 4 (SPI) is a logic 1. Refer to the DS3170 data

sheet for pin operation.

Bit 4: SPI: This bit controls the SPI Bus Mode bit.

0 = parallel bus mode 1 = SPI bus mode

Bit 3: HIZ: This bit controls the high-impedance test-enable bit (active low). This signal puts all the

digial outputs and bidirectional outputs to a high-impedance state when pulled low and

also when the JTRST is pulled low. For nomal operation, keep it as a logic 1.

Bit 2: WIDTH: This bit controls the databus width pin for parallel bus mode.

0 = 8-bit parallel mode 1 = 16-bit parallel mode

Bit 1: MOT: This bit controls the MODE pin for the DS3170.

0 = RD/WR strobe mode (Intel) 1 = DS strobe mode (Motorola)

Bit 0: MUX: This bit determines if the ALE pin on the DS3170 is in mux mode or nonmux mode

(constantly high). 0 = nonmux mode 1 = mux mode

Register Description: Control Register 2-Line IO

Register Offset: 0x0009

Bit# 7 6 5 4 3 2 1 0 RNEG2 RPOS3 RPOS1 RNEG3 RNEG1 RNEG0 RPOS2 RPOS0 Name Default 0 0 0 0 0 0 0

Bits 7 to 4: RNEGx: These bits control the source of the RNEG signal.

Bits 3 to 0: RPOSx: These bits control the source of the RPOS signal.

RPOSx	DESCRIPTION
0x00	HI-Z
0x01	TPOS
0x02	T3 OSC
0x03	E3 OSC
0x04	STS1 OSC
0x05	BNC_INPUT
0x06	Logic 0
0x07	Logic 1
0x08-0xFF	HI-Z

RNEGx	DESCRIPTION
0X00	HI-Z
0X01	TNEG
0X02	T3 OSC
0X03	E3 OSC
0X04	STS1 OSC
0X05	BNC_INPUT
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

Register Name: CTRL3
Register Description: Control Register 3–Line RCLK

Register Offset: 0x000A

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	RLCLK3	RLCLK2	RLCLK1	RLCLK0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: These bits are unused.

Bits 3 to 0: RLCLKx: These bits control the source of the RLCLK signal.

RLCLKx	DESCRIPTION
0X00	HI-Z
0X01	TLCLK
0X02	T3 OSC
0X03	E3 OSC
0X04	STS1 OSC
0X05	BNC_INPUT
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

Register Description: Control Register 4 Overhead Interface

Register Offset: 0x000B

Bit #	7	6	5	4	3	2	1	0
Name	TOHEN3	TOHEN2	TOHEN1	TOHEN0	TOH3	TOH2	TOH1	TOH0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: TOHENx: These bits control the source of the TOHEN signal.

Bits 3 to 0: TOHx: These bits control the source of the TOH signal.

TOHENx	DESCRIPTION
0X00	HI-Z
0X01	TOHSOF
0X02	ROHSOF
0X03	Not used
0X04	Not used
0X05	Not used
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

TOHx	DESCRIPTION
0X00	HI-Z
0X01	ROH
0X02	Not used
0X03	Not used
0X04	Not used
0X05	Not used
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

Register Description: Control Register 5 Serial Data Overhead Interface

Register Offset: 0x000C

Bit #	7	6	5	4	3	2	1	0
Name	_	_	_	_	TSER3	TSER2	TSER1	TSER0
Default	0	0	0	0	0	0	0	0

Bits 7 to 4: These bits are unused.

Bits 3 to 0: TSERx: These bits control the source of the TSER signal.

TSERx	DESCRIPTION
0X00	HI-Z
0X01	RSER
0X02	Not Used
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

Register Description: Control Register 6 Serial Data Overhead Interface

Register Offset: 0x000D

Bit # Name Default

7	6	5	4	3	2	1	0
TSOFI3	TSOFI2	TSOFI1	TSOFI0	TCLKI3	TCLKI2	TCLKI1	TCLKI0
0	0	0	0	0	0	0	0

Bits 7 to 4: TSOFIx: These bits control the source of the TSOFI signal.

Bits 3 to 0: TCLKIx: These bits control the source of the TCLKI signal.

TSOFIx	DESCRIPTION
0X00	HI-Z
0X01	TSOFO
0X02	RSOFO
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

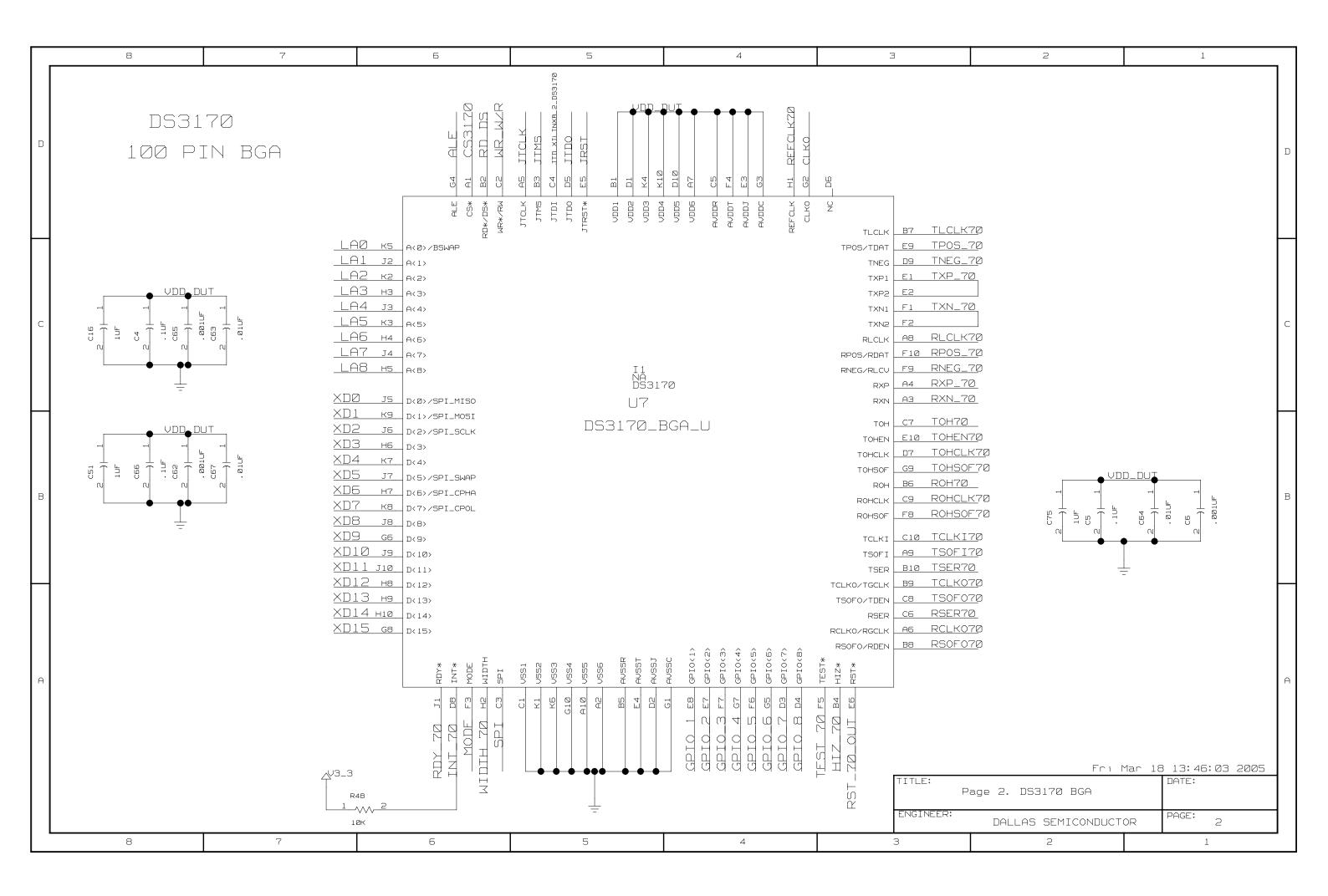
TCLKIx	DESCRIPTION
0X00	HI-Z
0X01	TCLKO
0X02	RCLKO
0X03	Not Used
0X04	Not Used
0X05	Not Used
0X06	Logic 0
0X07	Logic 1
0X08-0XFF	HI-Z

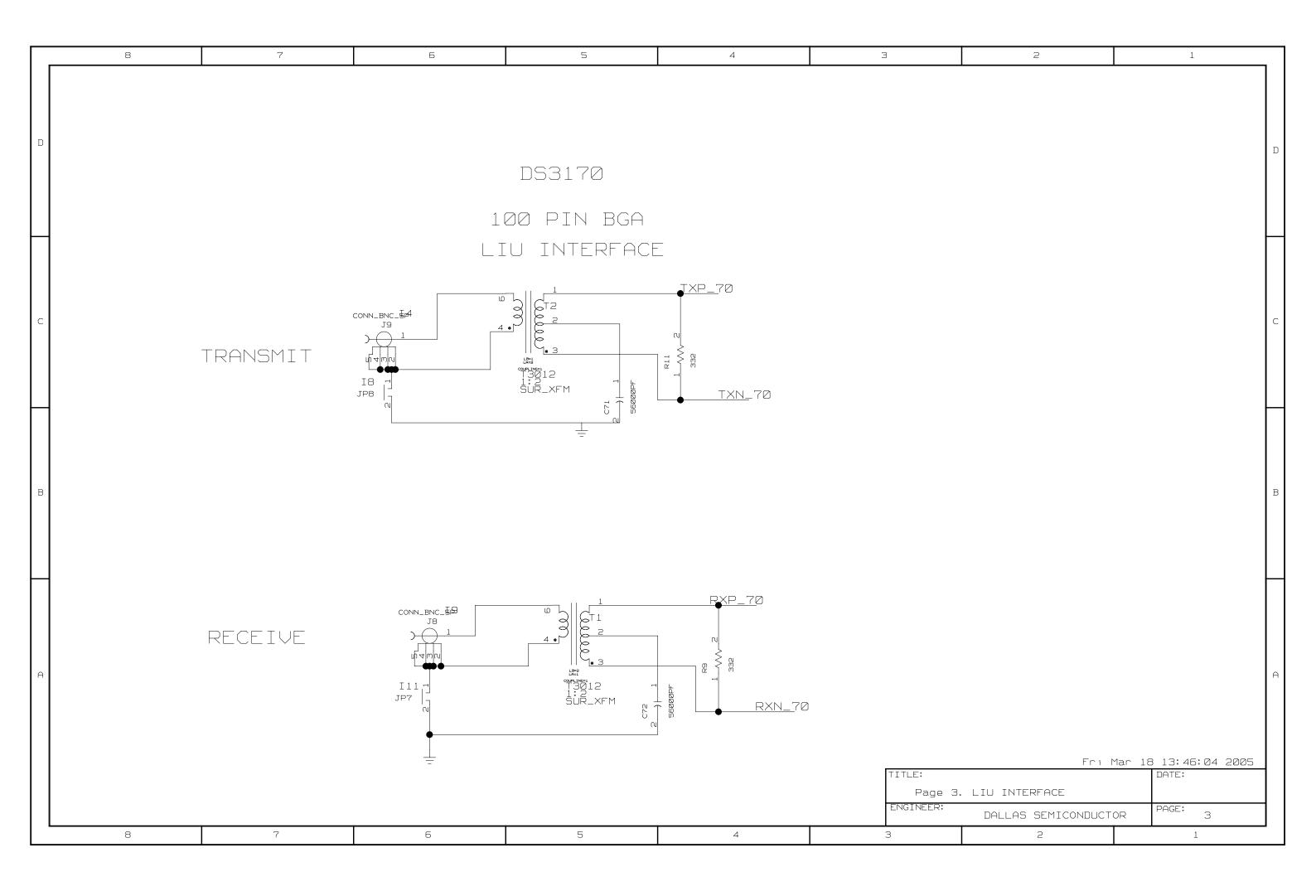
DS3170 INFORMATION

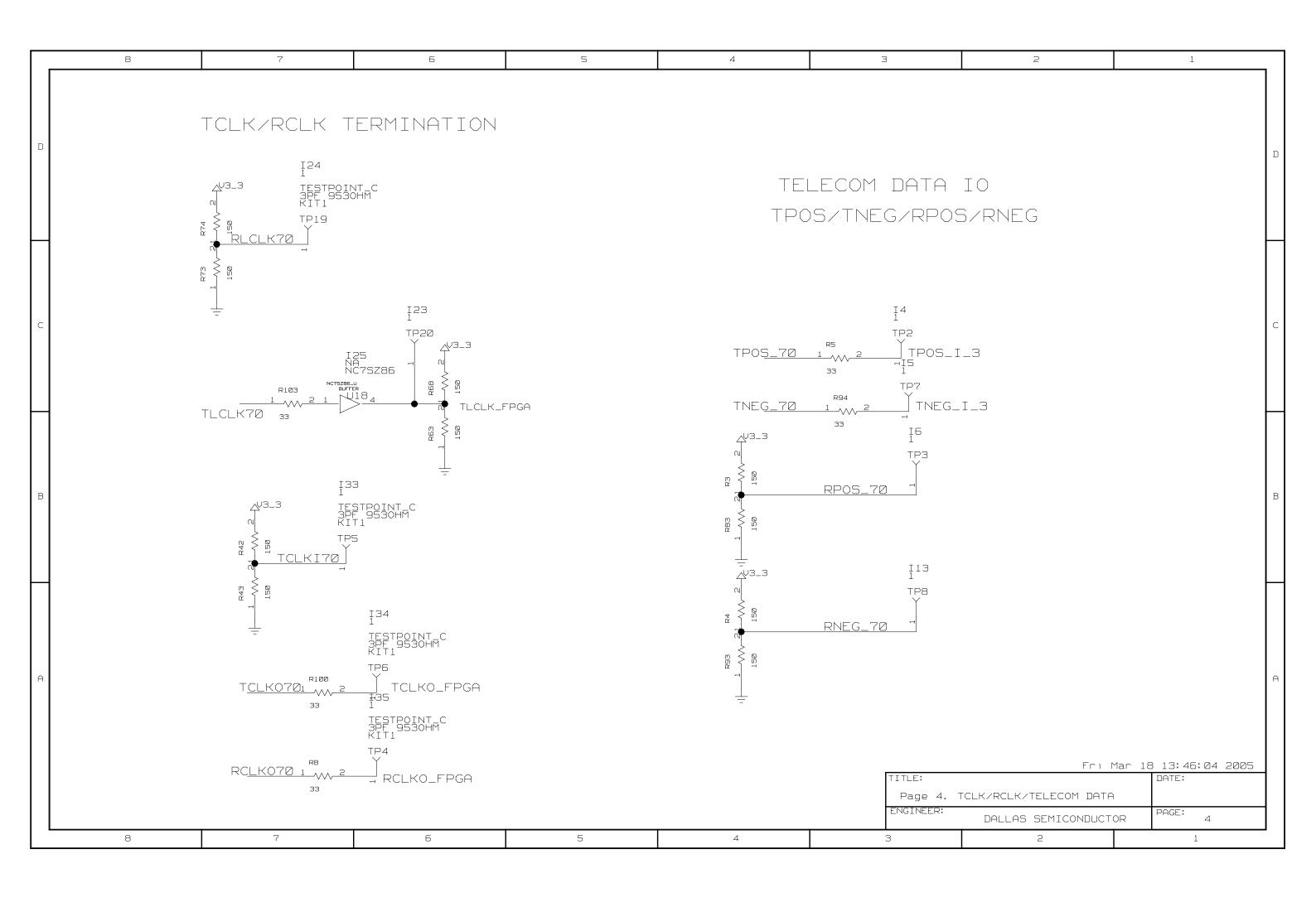
For more information about the DS3170, refer to the DS3170 data sheet available on our website at www.maxim-ic.com/DS3170. Software downloads are also available for this design kit.

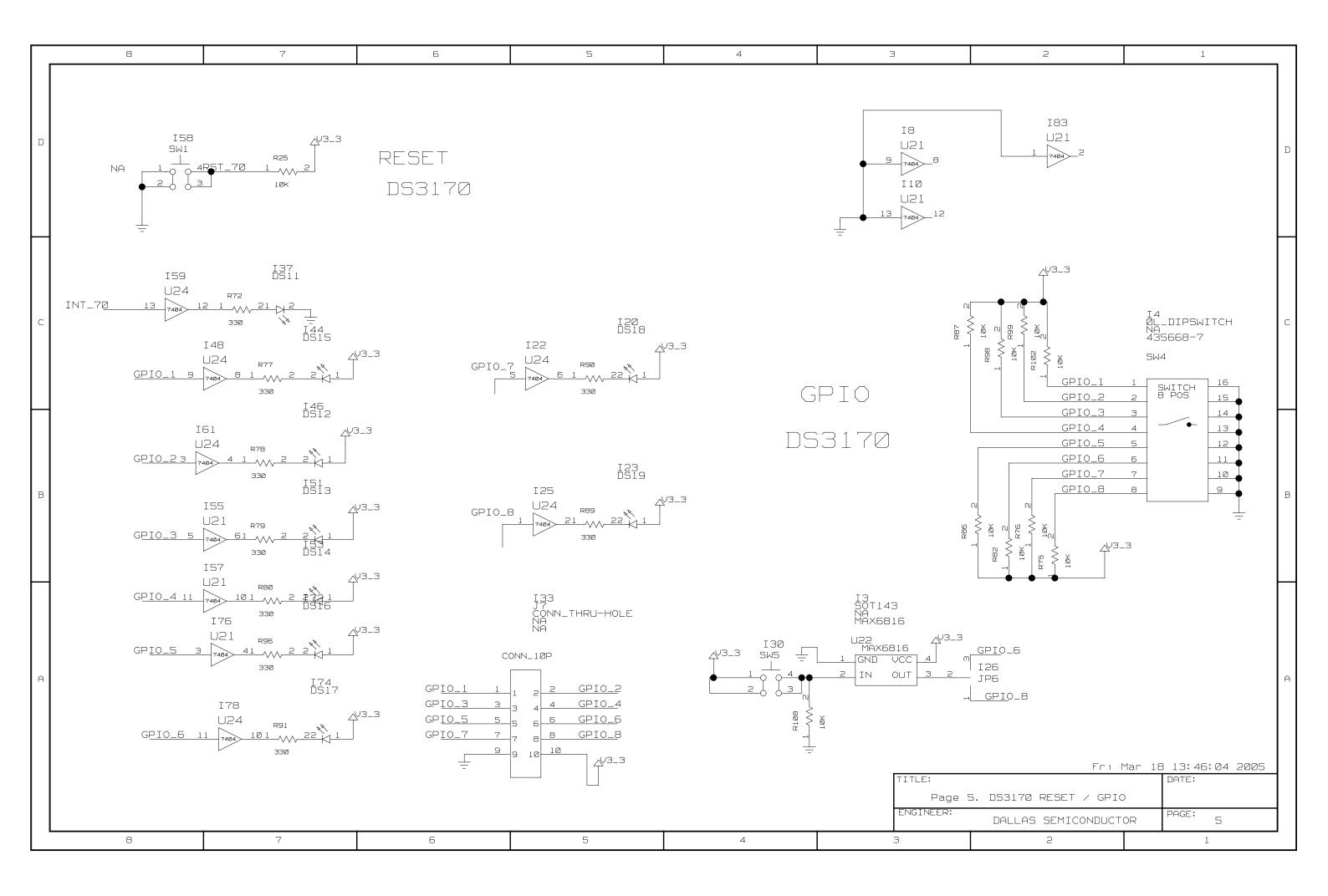
DS3170DK INFORMATION

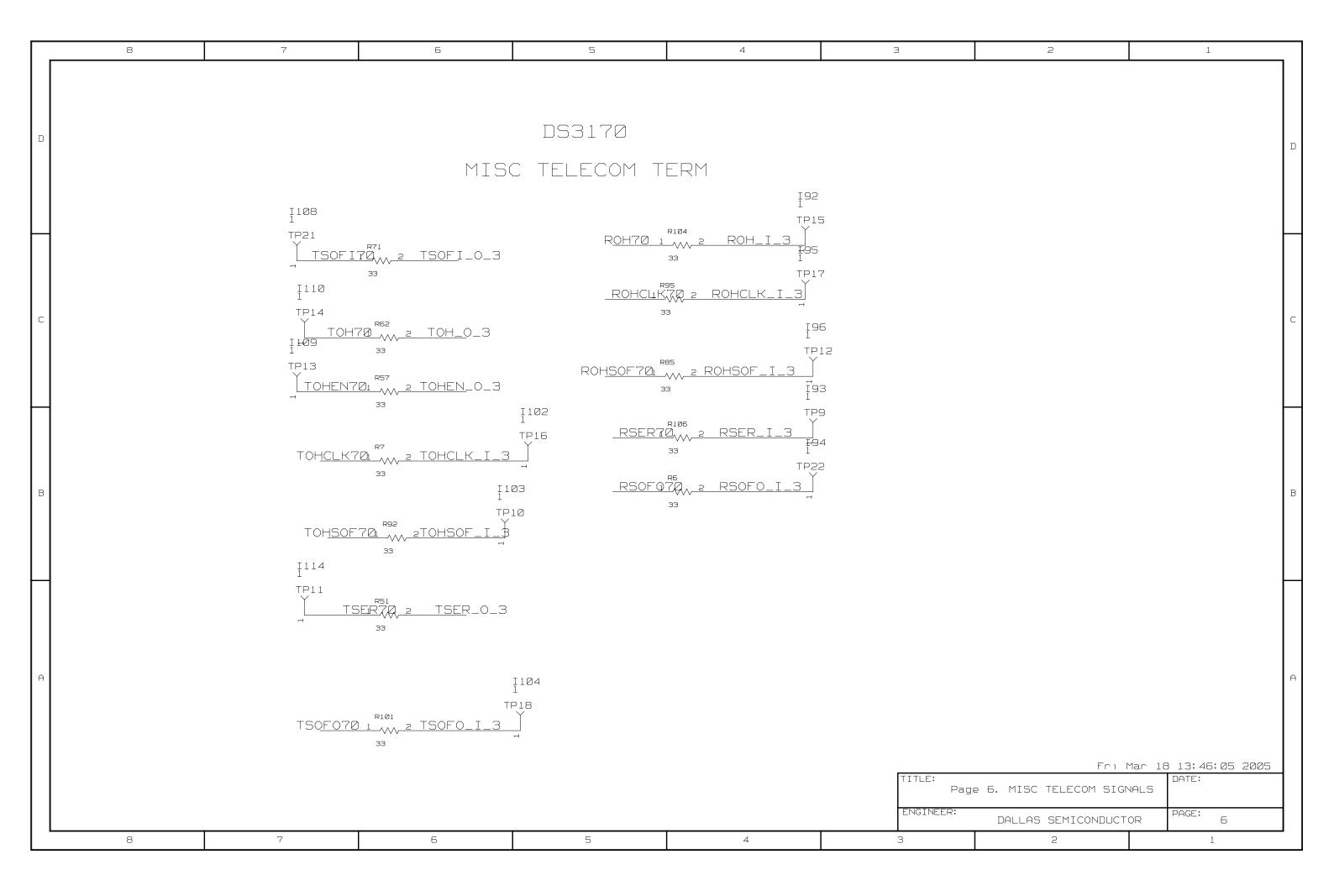
For more information about the DS3170DK including software downloads, consult the DS3170DK data sheet available on our website at www.maxim-ic.com/DS3170DK.

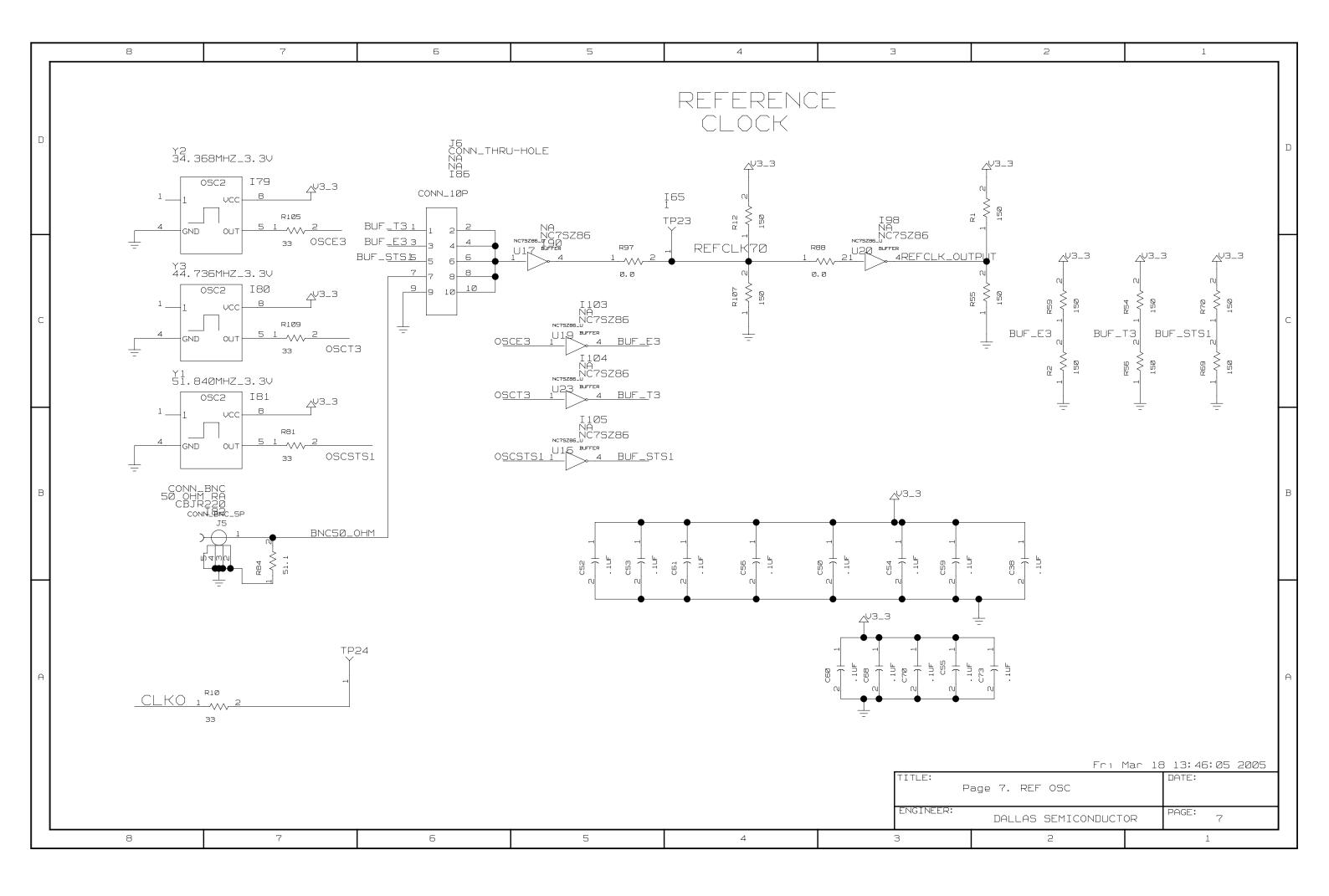

TECHNICAL SUPPORT

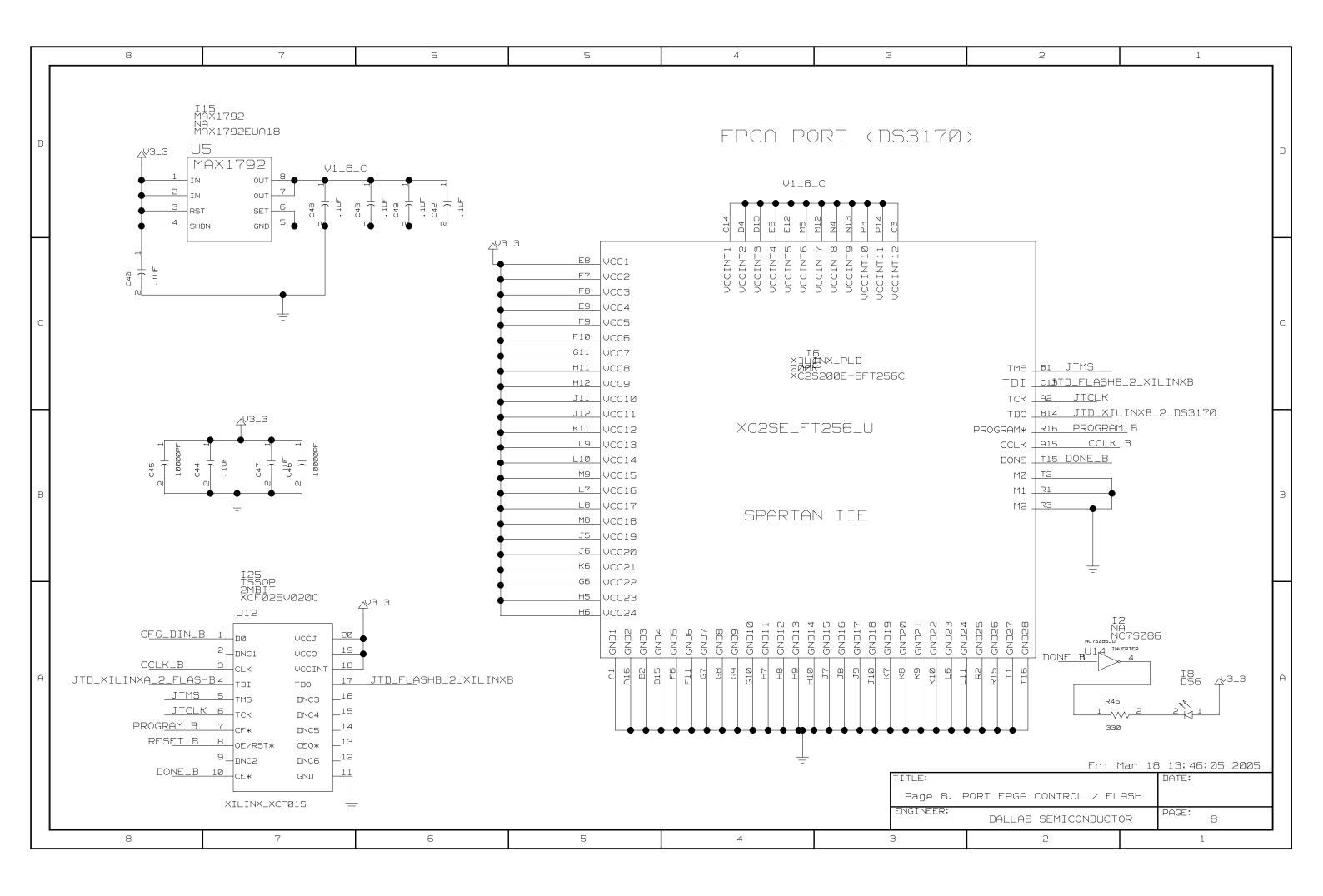

For additional technical support, e-mail your questions to telecom.support@dalsemi.com.

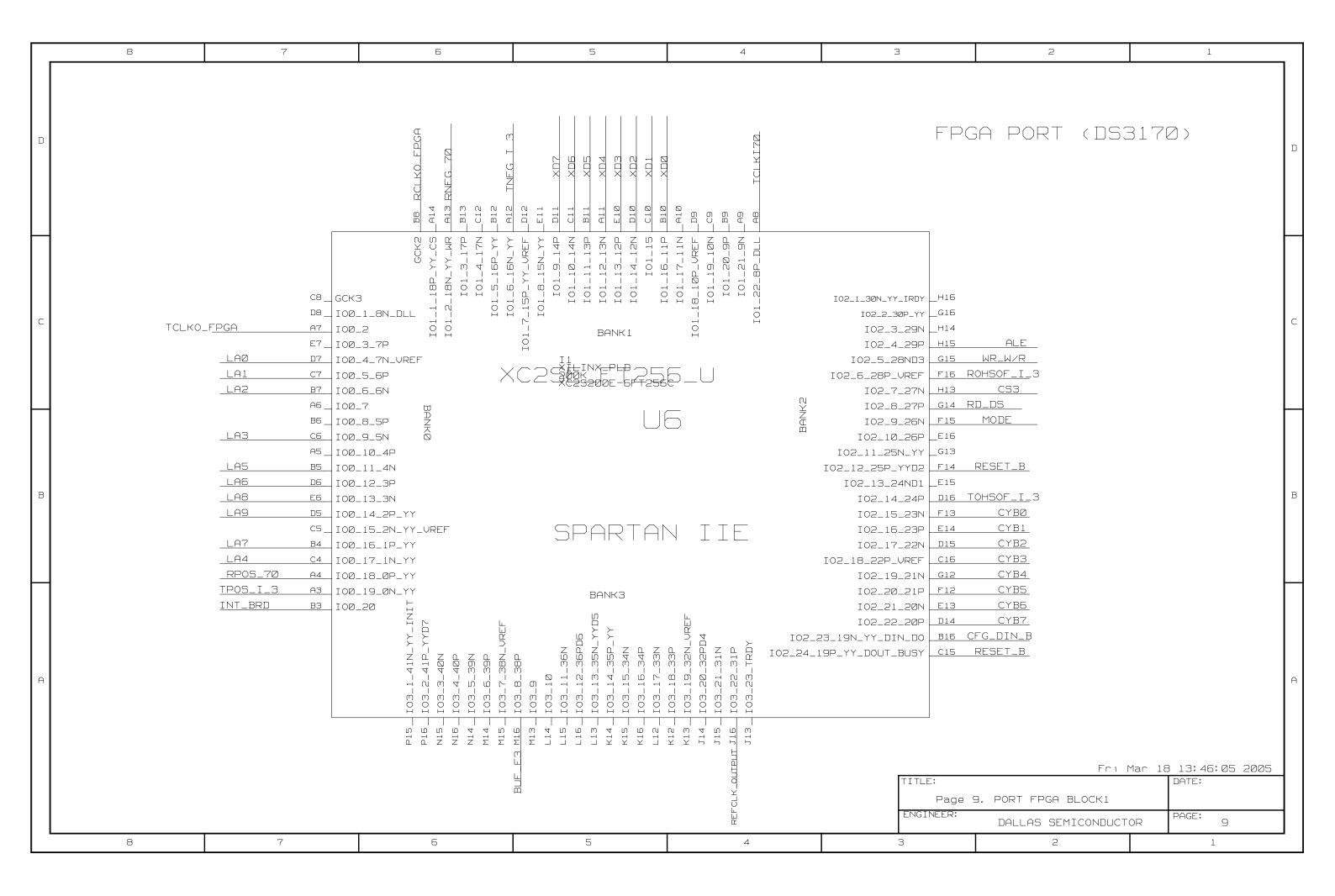

SCHEMATICS

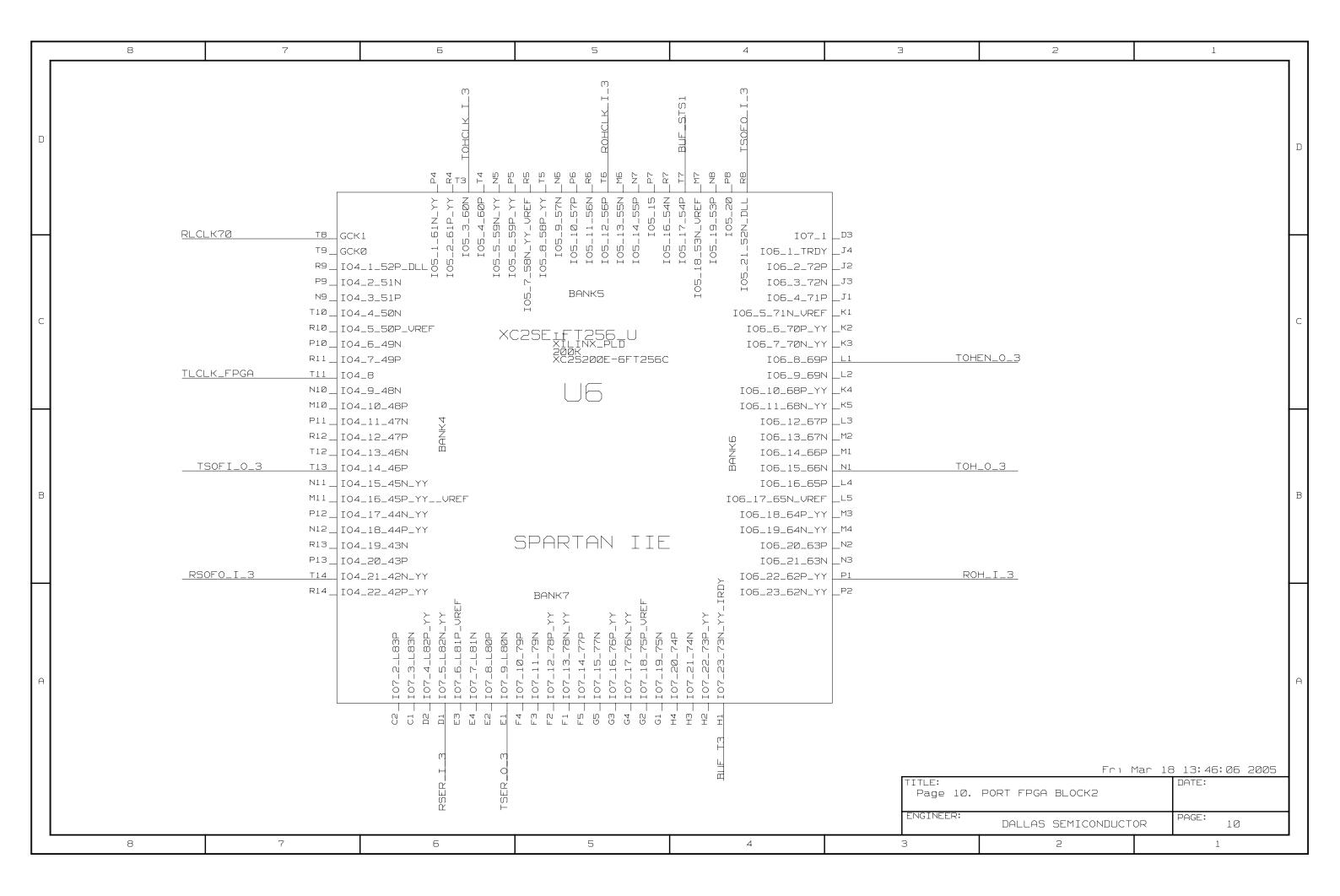

The DS3170DK schematics are featured in the following 23 pages.

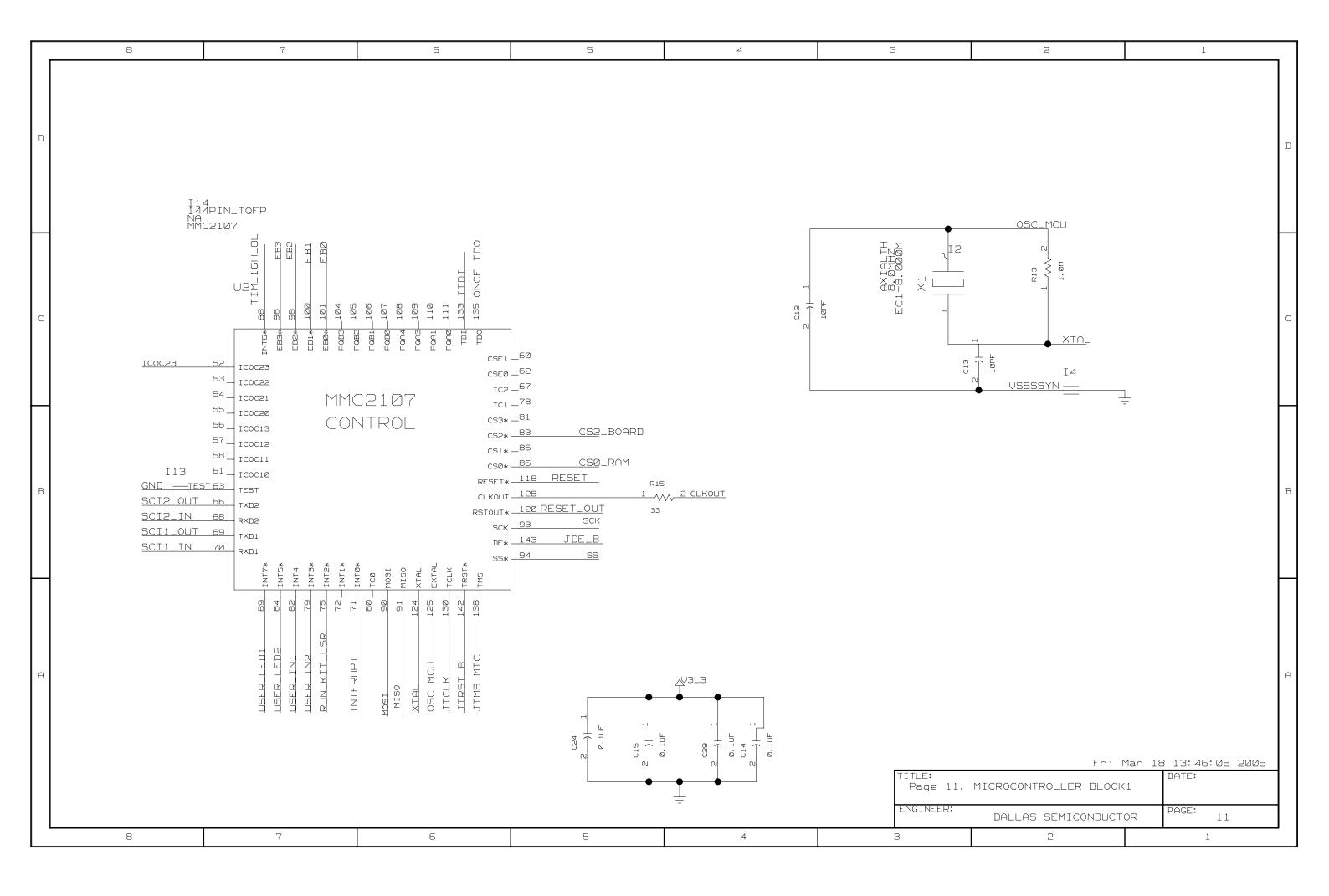

	8 7	Б	5	4	3	2	1		
D		DS31'	70 DES	STGN K				D	
			CREATED		· 				
			S SEMIC)R				
П			JNE 26,						
С	Page 1. COVER PAGE				Page 11. MICROCONTROLLER BLOCK1				
	Page 2. DS3170	ð BGA	Page 1	Page 12. MICROCONTROLLER BLOCK2					
Ц	Page 3. LIU INTERFACE				Page 13. SERIAL/JTAG CONN				
	Page 4. TCLK/F	RCLK/TELECOI	M DATA	Page 1	4. MISC US	ER INPUTS			
	Page 5. DS3170	Page 1	Page 15. GP FPGA CONTROL / FLASH						
В	Page 6. MISC 1	Page 1	Page 16. GP FPGA BLOCK1						
	Page 7. REF OSC				Page 17. GP FPGA BLOCK2				
H	Page 8. PORT FPGA CONTROL / FLASH			Page 1	Page 18. ADDRESS/DATA HEADERS				
	Page 9. PORT FPGA BLOCK1				Page 19. MICROCONTROLOR SRAM				
	Page 10. PORT FPGA BLOCK2			Page 2	Page 20. POWER CONN				
A				Page 2	Page 21. NOTES				
				_					
					TITLE:		Mar 18 13:45:59	2005	
					ENGINEER:	age 1. COVER PAGE	PAGE: 1		
	8 7	6	5	4	3	DALLAS SEMICONDUC	1		

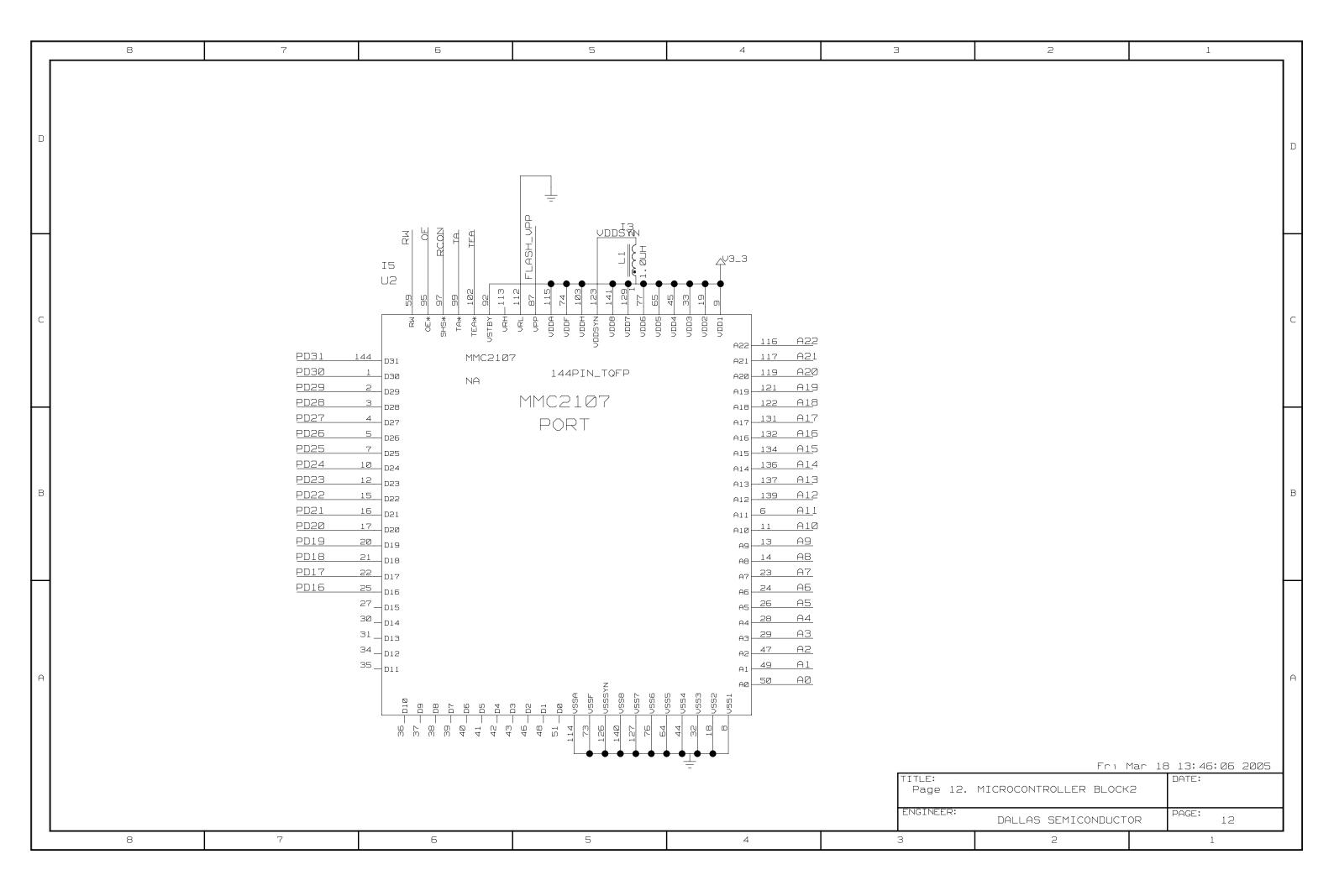


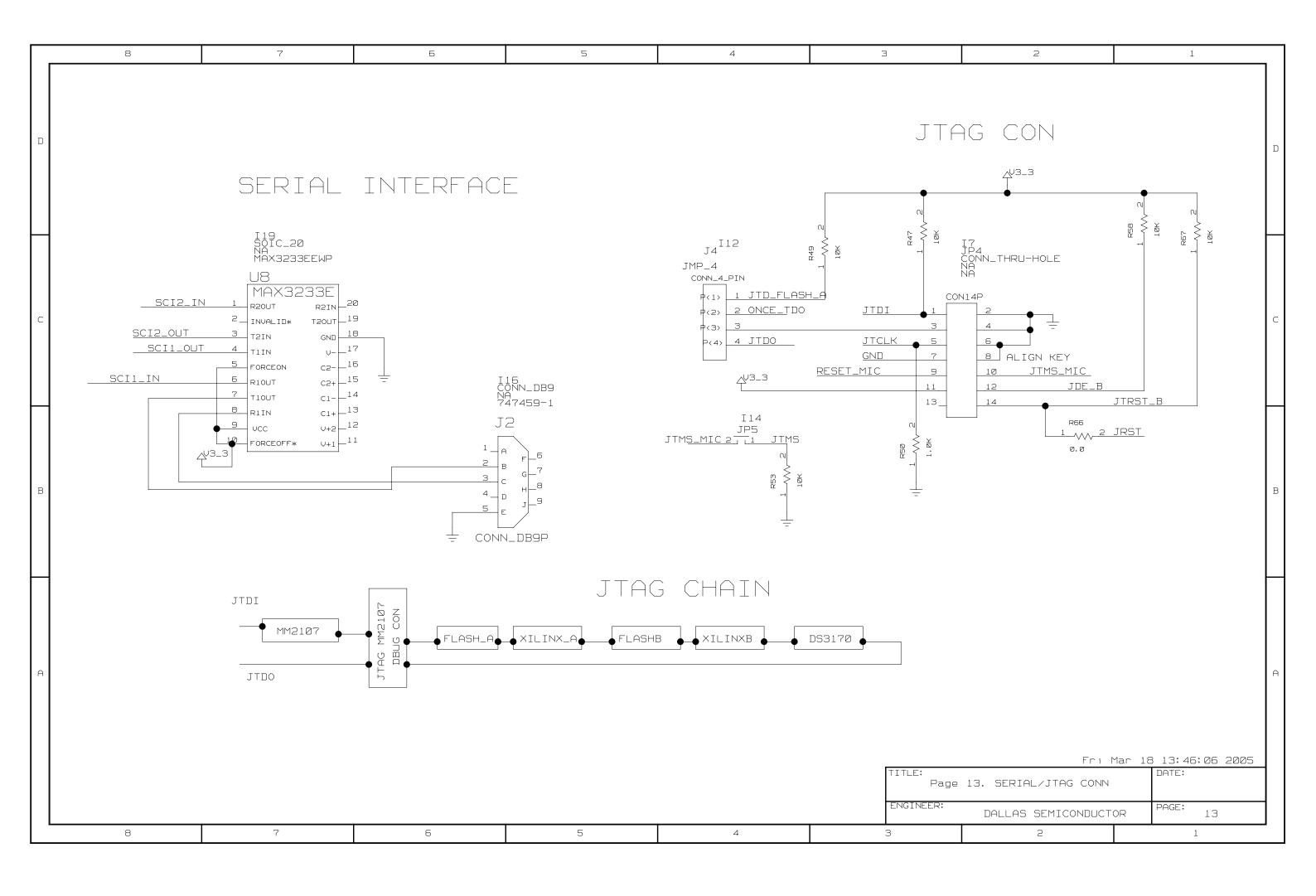


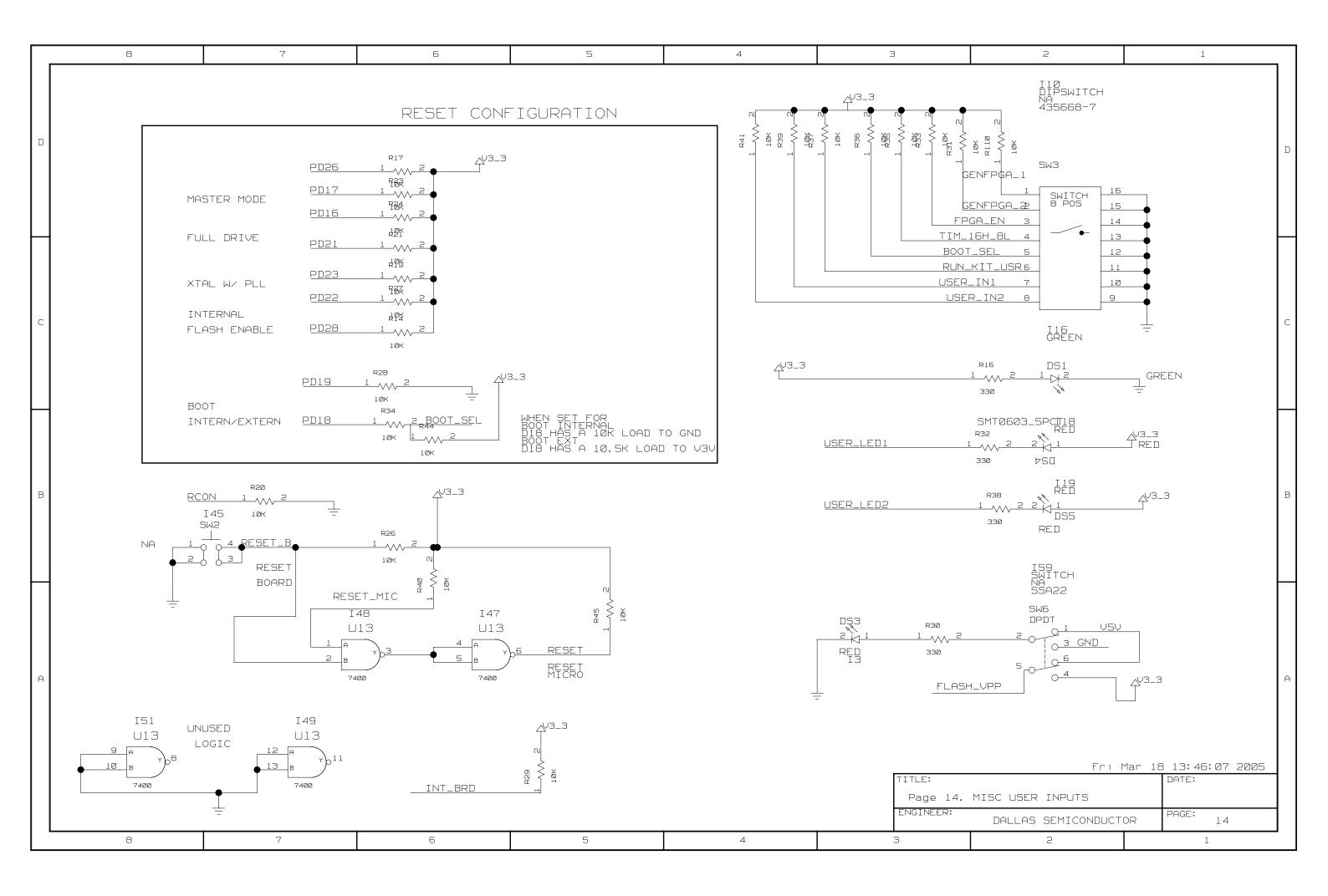


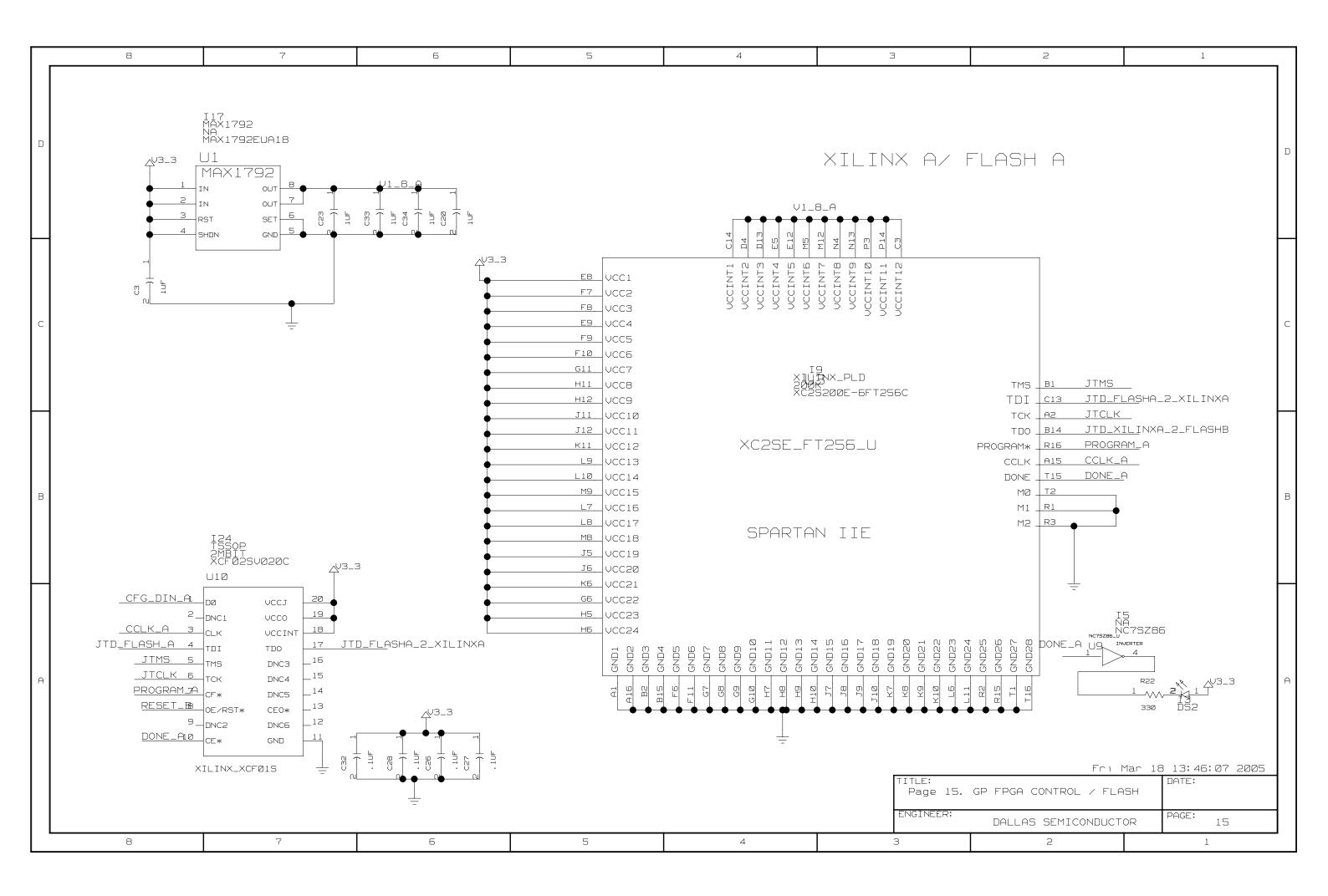


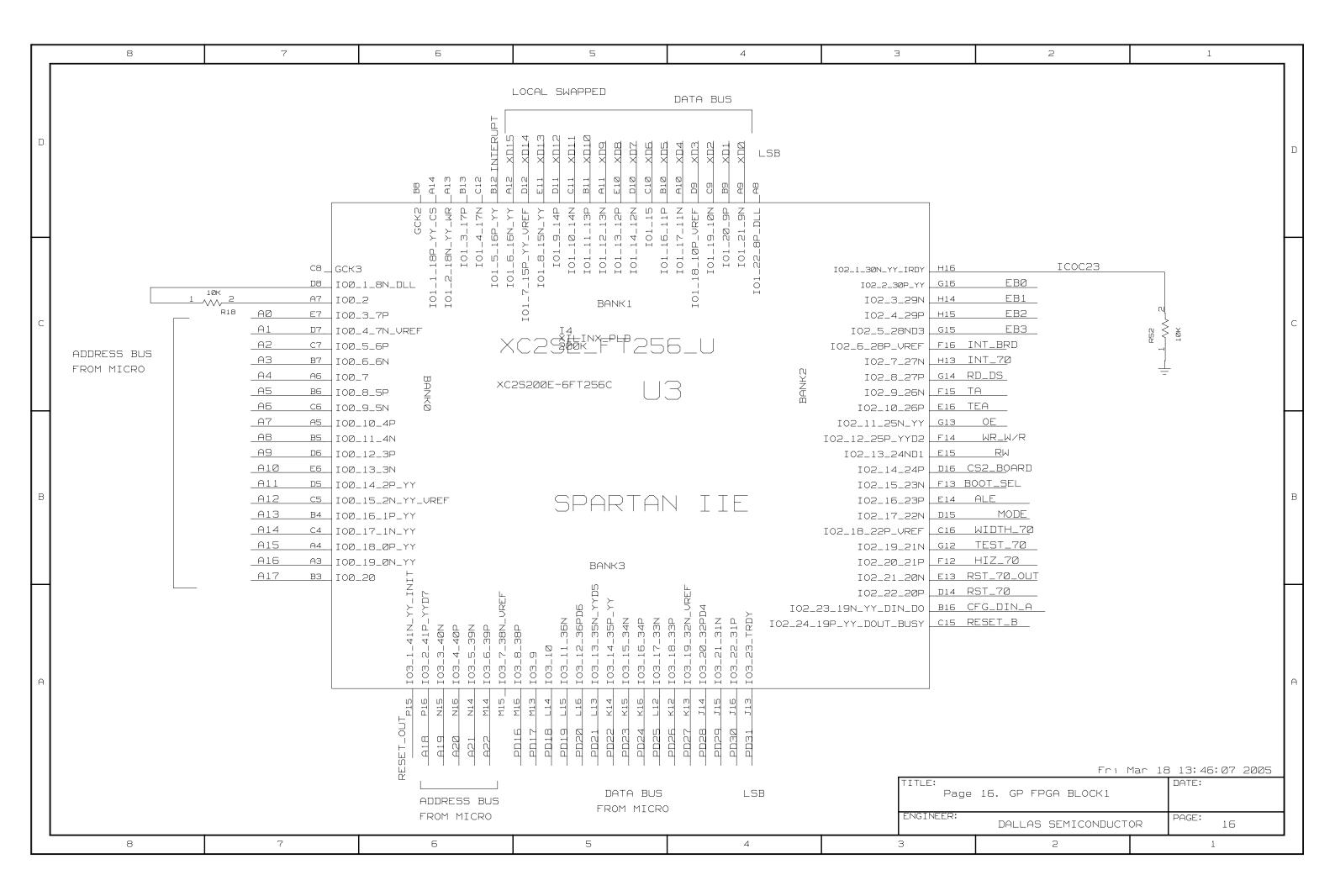


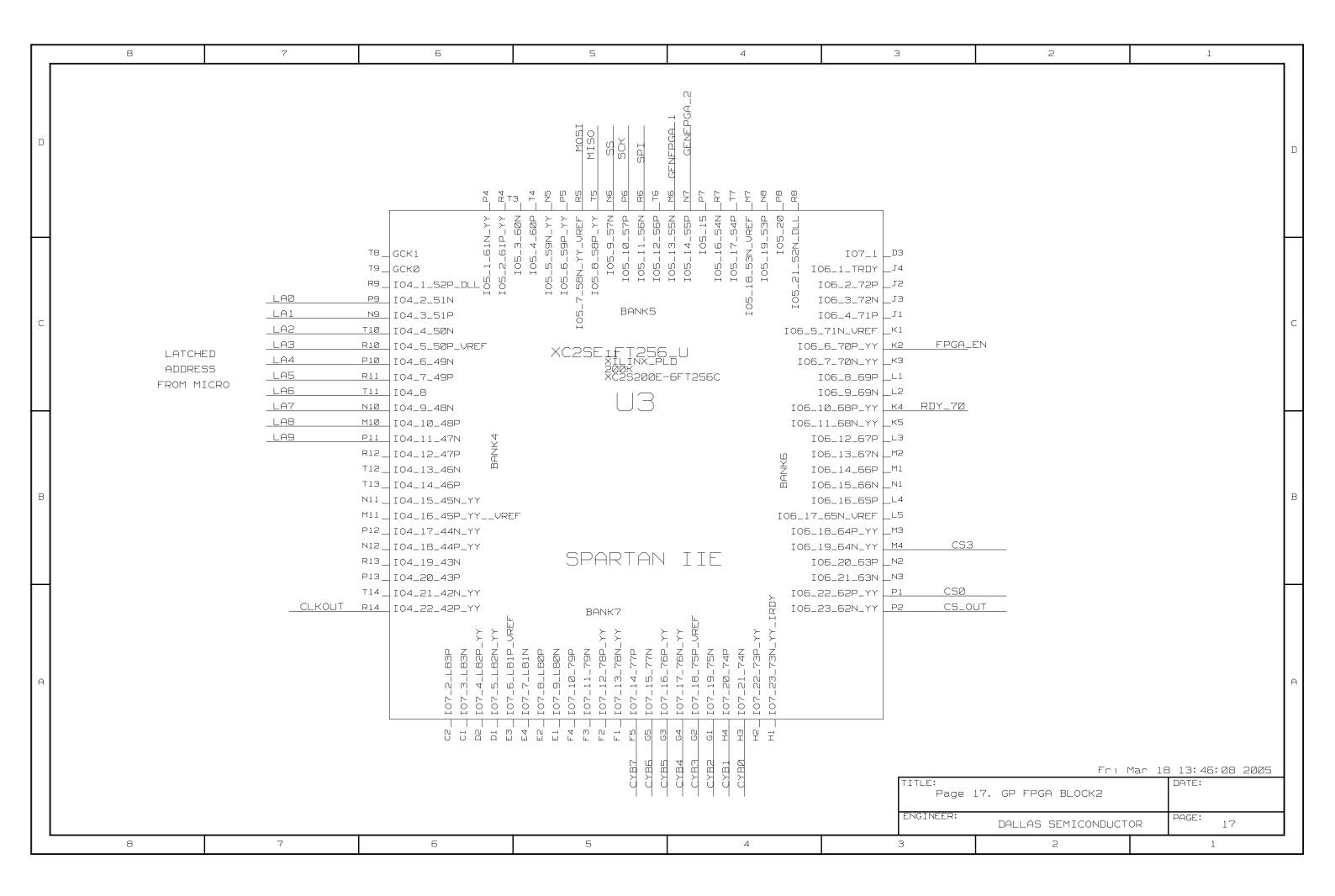


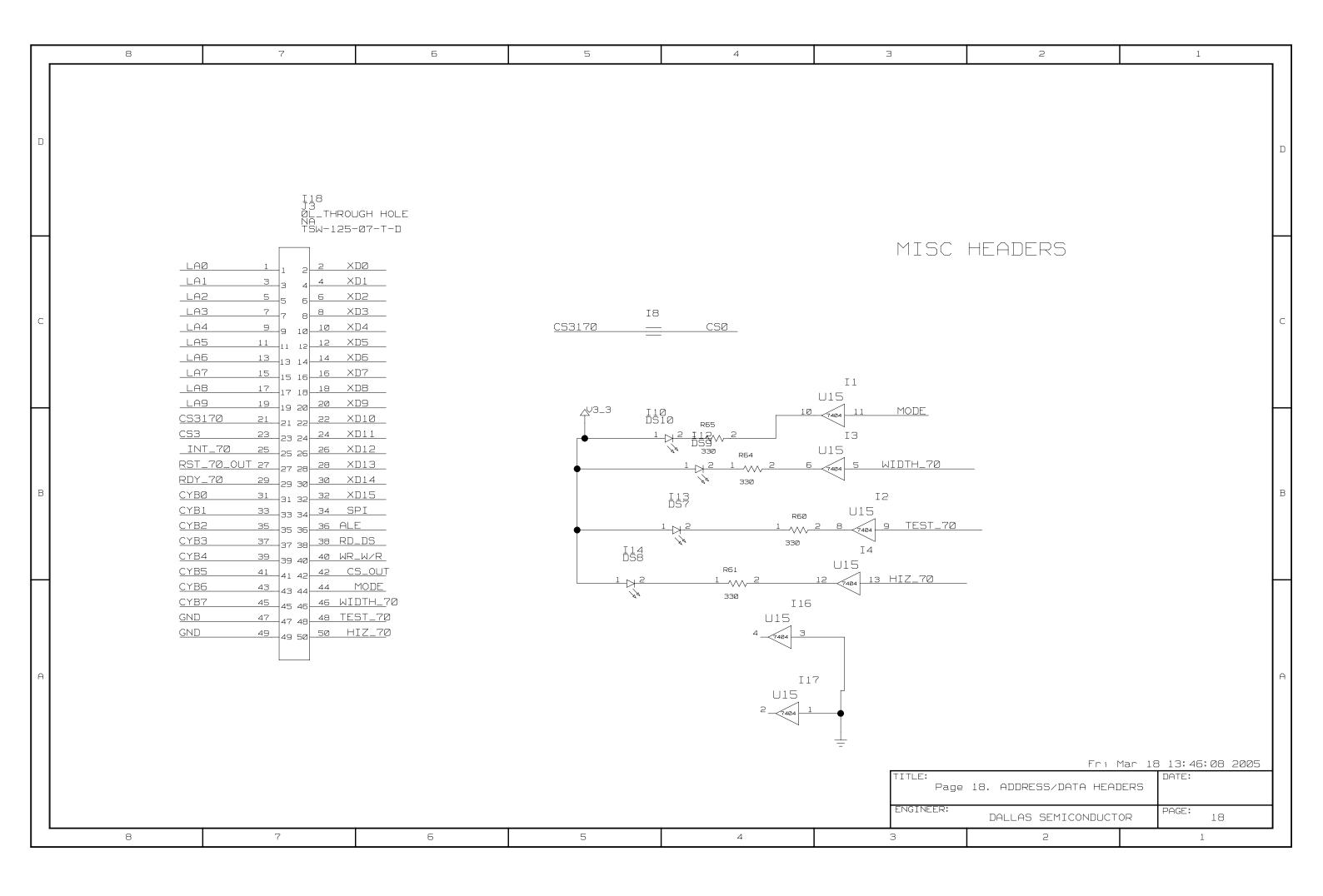


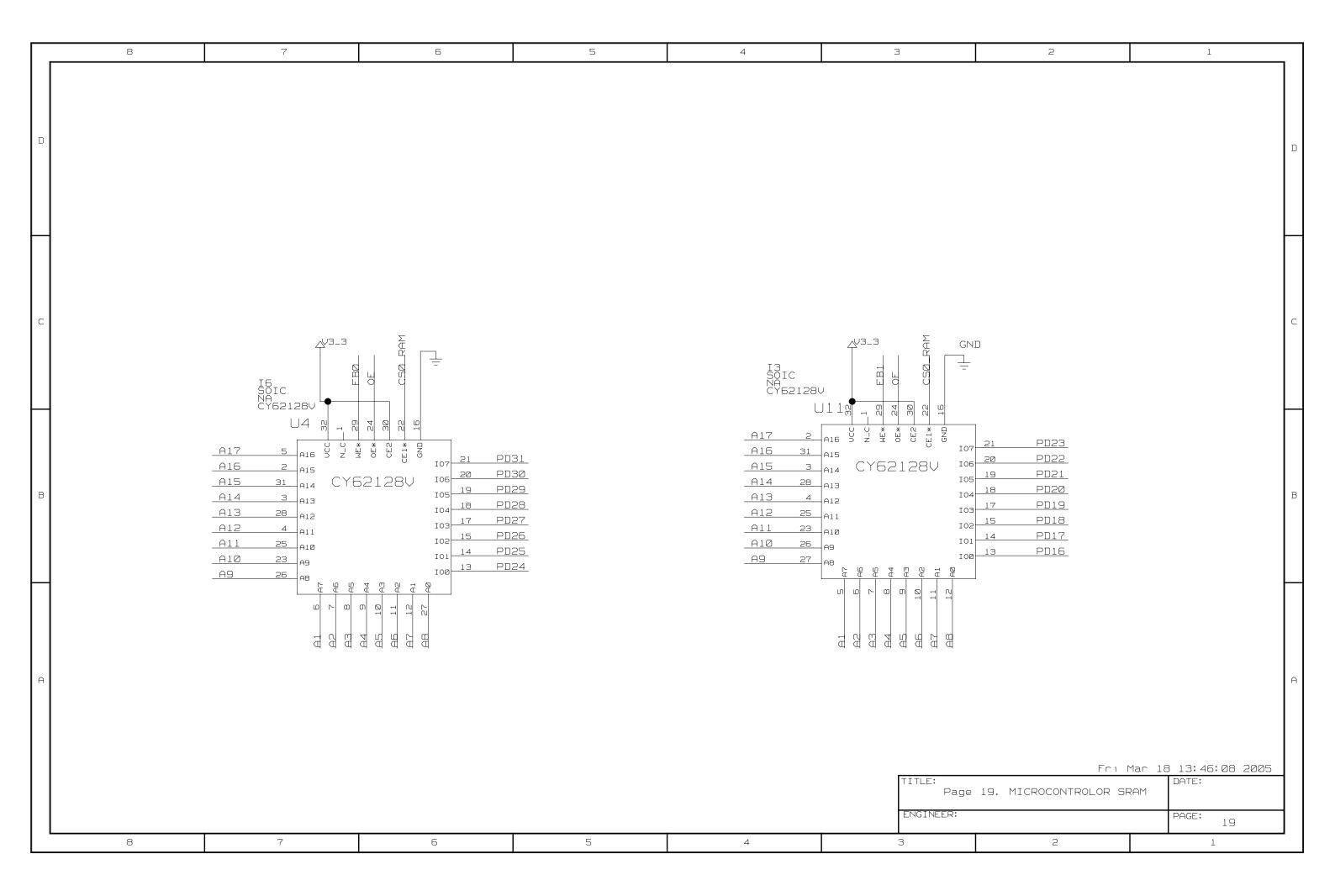


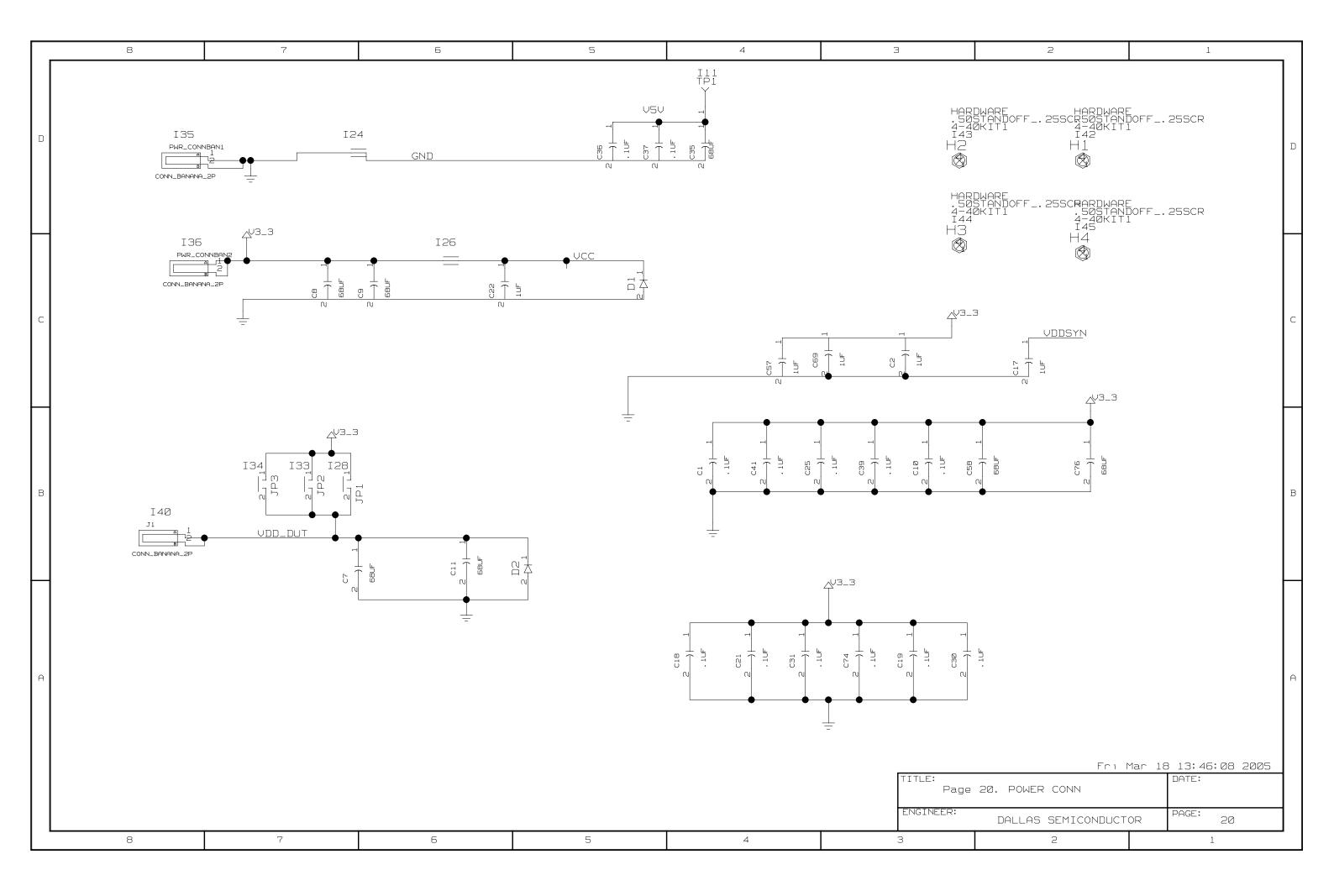


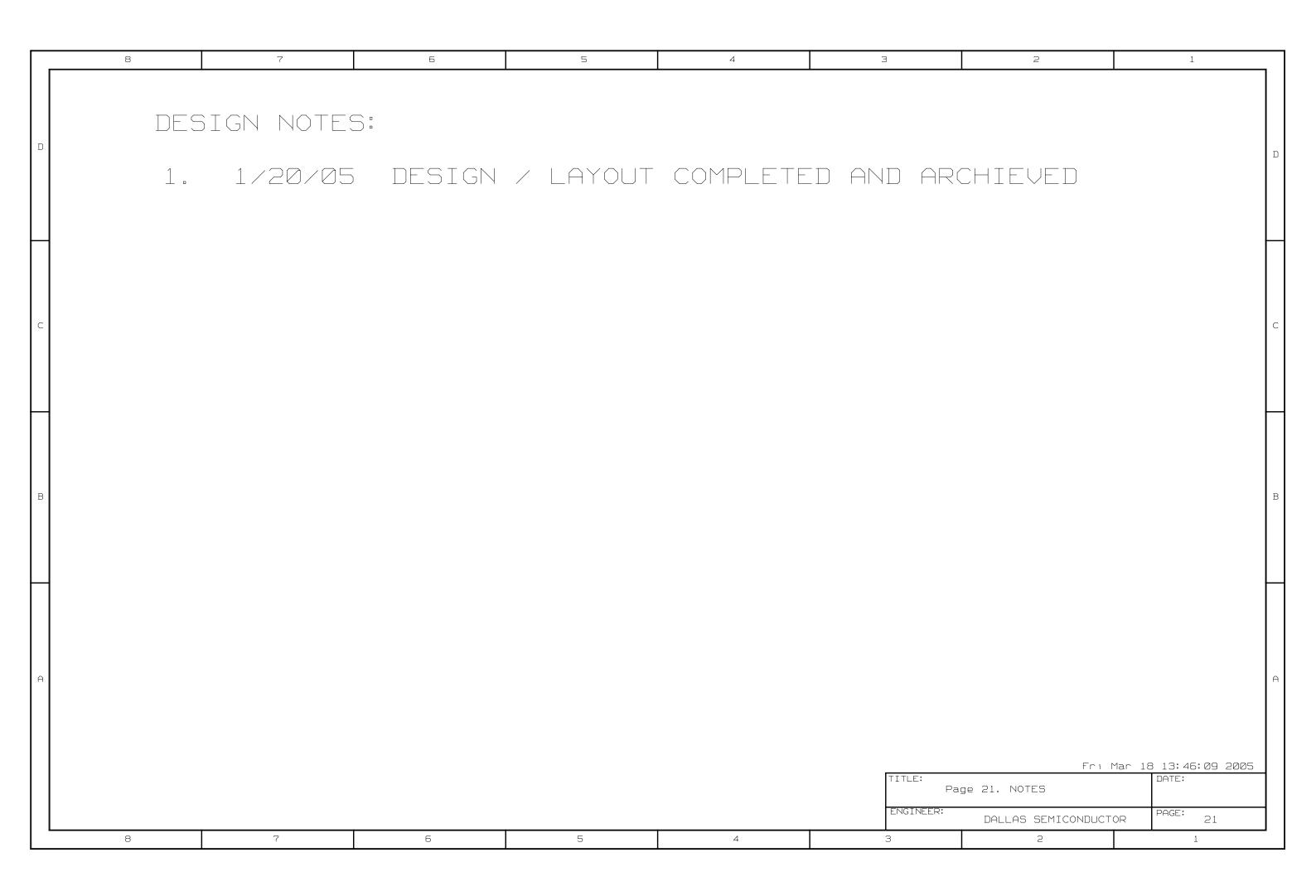


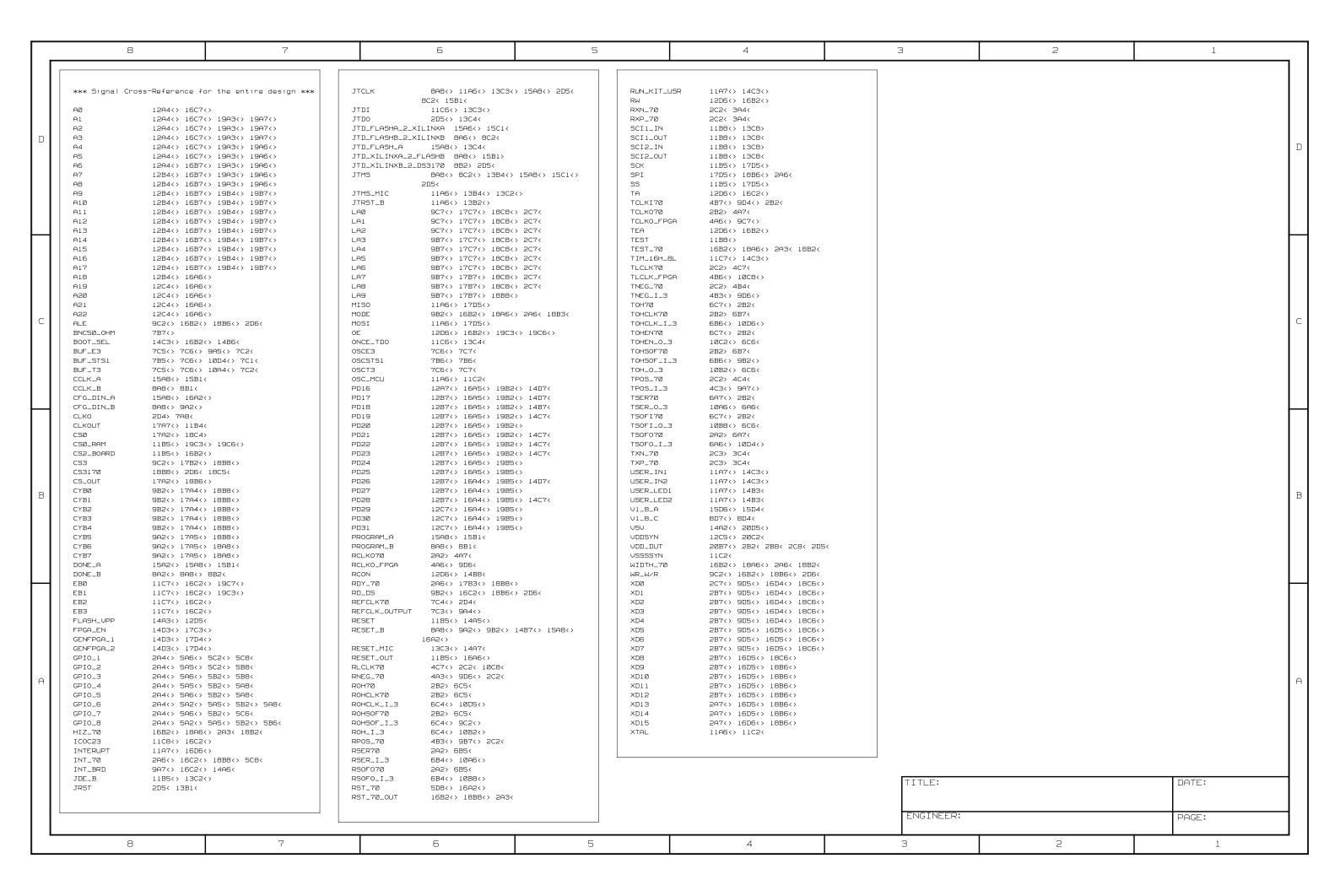












	8	7	6	5	4	3	2	1	$\overline{}$
ם	*** Part Cross-Reference for ' C1	D D D D D D D D D D D D D D D D D D D	12 DIODE 2085 151 LED 14C2 152 LED 15A1 153 LED 14A3 154 LED 14B2 155 LED 14B2 156 LED 8A1 157 LED 18B4 158 LED 18B5 159 LED 18B5 1510 LED 18B5 1511 LED 5C7 1512 LED 5B7	R32 RE: R33 RE: R34 RE: R35 RE: R36 RE: R37 RE: R39 RE: R40 RE: R41 RE: R42 RE: R43 RE: R44 RE: R44 RE: R45 RE: R45 RE:	51 14D3 51 14B6 51 14D3 51 14D3 51 14D4 51 14B2 51 14D4 51 14A6 51 14D4 51 4B7 51 4A7 51 14B6 51 14B5 51 14B5	T1 TRANSFORI T2 TRANSFORI TP1 TESTPOIN' TP2 TESTPOIN' TP3 TESTPOIN' TP4 TESTPOIN' TP5 TESTPOIN'	DN 14B8 POS 14D2 POS 5C1 DN 5A4 PDT_SLIDE_6P 14A2 MER_PULSE 3A5 MER_PULSE 3C5 F1 20D4 F1 4C3 F1 4A6 F1 4A6		
С	C14 CAP1 11A4 C15 CAP1 11A5 C16 CAP1 2C8 C17 CAP1 20C2 C18 CAP1 20A4 C19 CAP1 20A3 C20 CAP1 15D6 C21 CAP1 20A4 C22 CAP1 20A6 C23 CAP1 15D7 C24 CAP1 11A5 C25 CAP1 20B4 C26 CAP1 15A6 C27 CAP1 15A6 C27 CAP1 15A6 C28 CAP1 15A6 C29 CAP1 15A6 C30 CAP1 20A3 C31 CAP1 20A4 C32 CAP1 15A7	7: 2: 3: 4: 4: 4: 4: 4: 5: 5: 5: 5: 5: 6: 7: 7: 7: 7: 7: 7: 7: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:	4_40_HDWR_U 20D3 4_40_HDWR_U 20C3 4_40_HDWR_U 20C2 1 CONN_BANANA_2P 20B8 2 CONN_BBP 13B6 3 CONN_50P2 18D7 4 CONN_4_PIN 13C4 5 CONN_BNC_5P 7B7 6 CONN_10P 7D6 7 CONN_10P 5A5	R47 RE: R48 RE: R49 RE: R50 RE: R51 RE: R52 RE: R53 RE: R55 RE: R55 RE: R56 RE: R57 RE: R58 RE: R60 RE: R61 RE: R62 RE: R63 RE: R63 RE: R64 RE: R65 RE:	51 2A7 51 13C3 51 13B3 51 5A6 51 16C1 51 13B4 51 7C1 51 7C2 51 7C1 51 5C6 51 13C1 51 5C2 51 18B4 51 18B4 51 18B4 51 6C6 51 18B4 51 6C6	TP6	T1 4C3 T1 4A3 T1 6B4 T1 6B6 T1 6C7 T1 6C7 T1 6C7 T1 6B5 T1 6B4 T1 6B6 T1 6B7 T1 6B8		С
В	C33 CAP1 15D6 C34 CAP1 15D6 C35 CAP 20D4 C36 CAP1 20D5 C37 CAP1 20D5 C38 CAP1 7B2 C39 CAP1 20B3 C40 CAP1 8C8 C41 CAP1 8D6 C42 CAP1 8D6 C43 CAP1 8B8 C44 CAP1 8B8 C45 CAP1 8B8 C46 CAP1 8B7 C47 CAP1 8B7 C47 CAP1 8B7 C48 CAP1 8B7 C48 CAP1 8D7 C49 CAP1 8D6	JI JI JI JI JI JI L PP R R R R R R R	WR_CONNBAN1 CONN_BANANA_2P 20D8 WR_CONNBAN2 CONN_BANANA_2P 20C8 11	R66 RE: R67 RE: R68 RE: R69 RE: R70 RE: R71 RE: R72 RE: R73 RE: R74 RE: R75 RE: R76 RE: R77 RE: R78 RE: R78 RE: R78 RE: R79 RE: R79 RE: R80 RE: R81 RE: R82 RE:	51 13C1 51 4C6 51 7C1 51 7C1 51 5C7 51 4C7 51 4C7 51 5B2 51 5B7	U3 XC2SE_FT2 U4 CY62128V U5 MAX1792 U6 XC2SE_FT3 U7 D53170_B0 U8 MAX3233E U9 NC75Z86_L0 U10 X1LINX_X0 U11 CY62128V U12 XILINX_X0 U13 74_00 U14 NC75Z86_L0 U15 74_04 U16 NC75Z86_L0 U17 NC75Z86_L0 U17 NC75Z86_L0 U17 NC75Z86_L0 U18 NC75Z86_L0 U18 NC75Z86_L0 U18 NC75Z86_L0 U18 NC75Z86_L0	11C7 12C6 256_U 15C4 16C5 17B5 19B7 8D8 256_U 8C4 9B5 10C5 5A_U 2C5 13C7 U 15A2 CF015 15B7 19B4 CF015 8A7 14A6 14A7 14A8 U 8A2 18A4 18B3 18C3 U 7C5 U 7C5 U 7C5		В
А	C51 CAP1 2B8 C52 CAP1 7B5 C53 CAP1 7B5 C54 CAP1 7B3 C55 CAP1 7B3 C55 CAP1 7B3 C56 CAP1 7B4 C57 CAP1 20C4 C58 CAP1 20B3 C59 CAP1 7B3 C60 CAP1 7B4 C62 CAP1 7B4 C62 CAP1 2B8 C63 CAP1 2C7 C64 CAP1 2B1 C65 CAP1 2B1 C65 CAP1 2B8 C66 CAP1 2B1 C66 CAP1 2B8 C67 CAP1 3B5 C69 CAP1 3B5 C72 CAP1 3A5 C71 CAP1 3B5 C72 CAP1 7A2 C74 CAP1 7A2 C74 CAP1 7A2 C74 CAP1 7A2 C75 CAP1 7A2 C74 CAP1 7A2 C74 CAP1 7A2 C75 CAP1 7A2 C75 CAP1 7A2 C75 CAP1 7A2 C76 CAP1 7A2 C77 CAP1 7A3 C77		88 RES1 4A7 89 RES1 3A4 810 RES1 3C4 811 RES1 3C4 812 RES1 3C4 813 RES1 11C2 814 RES1 14C6 815 RES1 14C2 816 RES1 14C2 817 RES1 14D6 818 RES1 14C5 820 RES1 14C6 821 RES1 14D6 822 RES1 14D6 823 RES1 14D6 824 RES1 14D6 825 RES1 14B6 827 RES1 14C6 828 RES1 14C6 829 RES1 14C6 829 RES1 14A5 830 RES1 14A3	R84 RE: R85 RE: R86 RE: R87 RE: R88 RE: R89 RE: R90 RE: R91 RE: R92 RE: R93 RE: R94 RE: R95 RE: R96 RE: R96 RE: R97 RE: R98 RE: R98 RE: R99 RE: R100 RE: R101 RE: R102 RE: R103 RE: R104 RE: R105 RE: R106 RE: R106 RE: R107 RE: R106 RE: R107 RE: R108 RE: R108 RE: R109 RE: R100 RE: R100 RE: R101 RE: R102 RE: R104 RE: R105 RE: R106 RE: R107 RE: R106 RE: R107 RE:	51	U19 NC75Z86_L U20 NC75Z86_L U21 74_04 U22 MAK6B16 U23 NC75Z86_L U24 74_04 X1 XTAL Y1 05C2 Y2 05C2 Y3 05C2	J 7C3 5A7 5B8 5D2 5D3 5A3	DATE:	А
	C75 CAP1 2B2		31 RES1 14D3	R108 RE	i	ENGINEER:		PAGE:	
	8	7	6	5	4	3	2	1	