

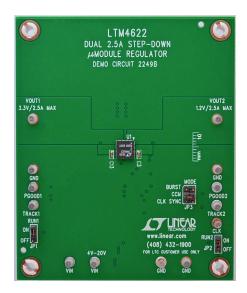
DEMO MANUAL DC2249B

LTM4622EV Ultrathin Dual 2.5A Step-Down µModule Regulator

DESCRIPTION

Demonstration circuit 2249B features the LTM®4622EV µModule® regulator, a tiny low profile high performance high efficiency dual step-down regulator. The LTM4622 has an operating input voltage range of 3.6V to 20V and is able to provide an output current of up to 2.5A for each channel. Each output's voltage is programmable from 0.6V to 5.5V. The LTM4622 is a complete DC-DC point of load regulator in a low profile thermally enhanced 6.25mm × 6.25mm × 1.82mm LGA package requiring only a few input and output capacitors. Output voltage tracking is available through the TRACK/SS pin for supply rail sequencing.

External clock synchronization is available through the SYNC/MODE pin. For high efficiency at low load currents the MODE pin jumper (JP3) selects the Burst Mode® option for operation in less noise sensitive applications. The LTM4622 data sheet must be read in conjunction with this demo manual for working on or modifying demo circuit 2249B.


Design files for this circuit board are available at http://www.linear.com/demo/DC2249B

∠7, LT, LTC, LTM, Linear Technology, µModule, Burst Mode and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at T_A = 25°C

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		4V to 20V
Output Voltage V _{OUT1} , V _{OUT2}	Programmable with FB Pin Resistors	3.3V _{DC} , 1.2V _{DC}
Maximum Continuous Output Current Each Phase	Derating is Necessary for Certain Operating Conditions. See Data Sheet for Details	2.5A _{DC}
Default Operating Frequency		1MHz
Efficiency	V_{IN} = 12V, V_{OUT1} = 3.3V, I_{OUT} = 2.5A, f_{SW} = 2MHz V_{IN} = 12V, V_{OUT2} = 1.2V, I_{OUT} = 2.5A, f_{SW} = 1MHz	87.5%. See Figure 2 76.7%. See Figure 2

BOARD PHOTO

dc2249bf

Demonstration circuit 2249B is an easy way to evaluate the performance of the LTM4622. Please refer to Figure 1 for test setup connections and follow the procedure below.

With power off, place the jumpers in the following positions for a typical application for 3.3V_{OUT} and 1.2V_{OUT} rails:

JP1	JP2 JP3			
RUN1	RUN2	MODE		
ON	ON	CCM		

- 2. Before powering up the input supply and loads, preset the input voltage supply to be between 4V to 20V. Preset the load current for each output rail to 0A.
- 3. With power off, connect the loads, input voltage supply and meters as shown in Figure 1.
- Turn on the input power supply. The output voltage meters for each output rail should display the programmed output voltage ± 2%.

- 5. Once the proper output voltages are established, adjust the load current on each rail within the 0A to 2.5A range and observe each output rail's load regulation, efficiency, and other parameters.
- 6. To observe increased light load efficiency place the mode pin jumper (JP3) in the BURST position.

Note: Demonstration circuit 2249B is designed to exhibit the wide output voltage range of the LTM4622. In order to keep inductor current ripple within reasonable limits it is recommended to increase programmed switching frequency for higher output voltages. The programmed switching frequency for data provided in this manual is consistent with switching frequency recommendations corresponding to the programmed output voltage. Please refer to the LTM4622 data sheet for more details regarding recommended switching frequency for your particular application.

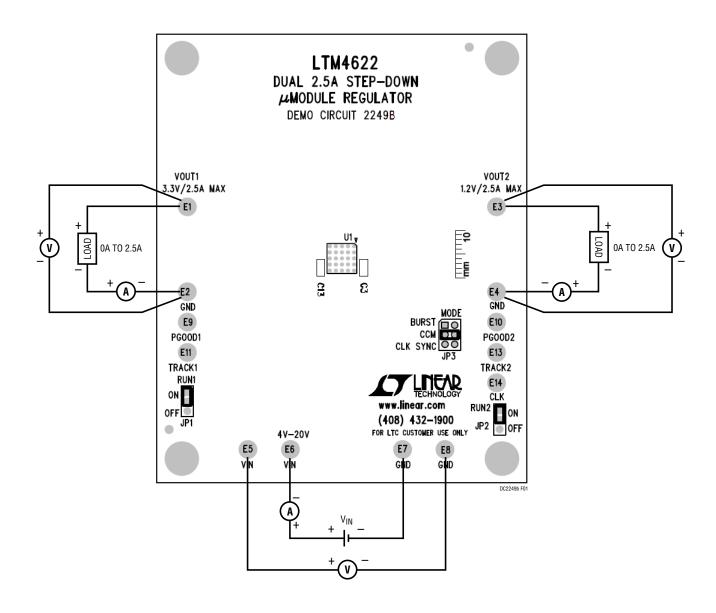
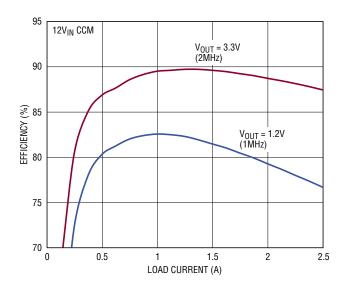



Figure 1. Test Setup

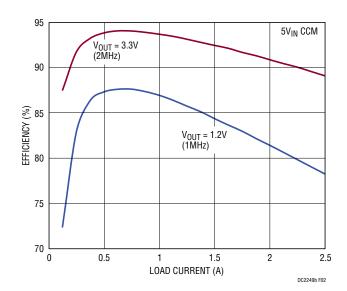
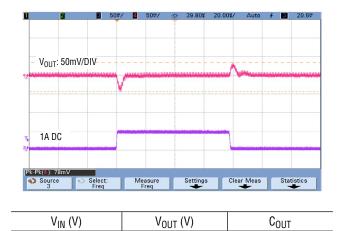



Figure 2. Measured Supply Efficiency at $12V_{IN}$ and $5V_{IN}$

	2	8	500/	4	500/	**	39.80%	20.00%/	Stop	f 3	20.60
						1					
						-					
								A			
						1		/_'	\		
MANAGEMENT	-	-		-	Minagesa		distant.	adinative .	1		-
			\ ,	/		-			-		
			V			-					
						1					
			-								
						1					
		فسانانين				-	-				
						+					
Pk-Pk(4): 1											
Sourc 3	e 🗎	Select Freq		M	easure Freq		Settings	Clea	r Meas	St	atistics
		ricq			104						

V _{IN} (V)	V _{OUT} (V)	C _{OUT}		
12	3.3	1 × 22μF + 1 × 47μF		

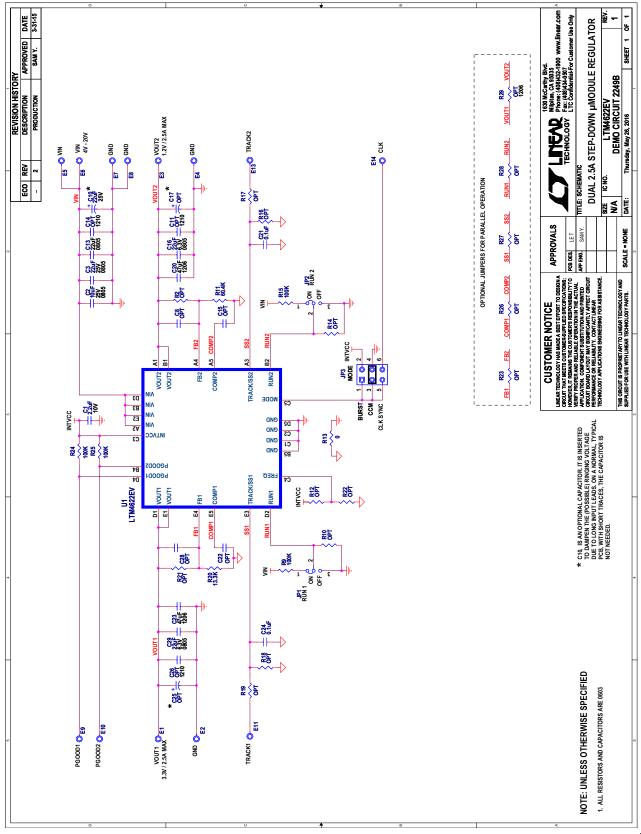
12 1.2 1 × 22μF + 1 × 47μF

Figure 3. Measured Load Transient Response (1A to 2A Load Step)

Figure 4. Measured Load Transient Response (1A to 2A Load Step)

 V_{IN} (V)
 V_{OUT1} (V), I_{OUT1} (A)
 V_{OUT2} (V), I_{OUT2} (A)
 f_{SW} (MHz)
 T_{AMBIENT} (°C)

 12
 3.3, 2.5
 1.2, 2.5
 2
 22


Figure 5. Thermal Capture at Full Load Natural Convection

DEMO MANUAL DC2249B

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER			
Require	Required Circuit Components						
1	1	C1	CAP, X5R, 2.2µF, 10V, 10%, 0603	MURATA, GRM188R61A225KE34D			
2	2	C3, C13	CAP, X5R, 22µF, 25V, 20%, 0805	MURATA, GRM21BR61E226ME-44L			
3	2	C16, C29	CAP, X5R, 22µF, 6.3V, 20%, 0805	MURATA, GRM21BR60J226ME39L			
4	2	C20, C23	CAP, X5R, 47µF, 6.3V, 20%,1206	MURATA, GRM31CR60J476ME19L			
5	2	C21, C24	CAP, X5R, 0.1µF, 25V, 10%, 0603	MURATA, GRM188R61E104KA01D			
6	1	R11	RES, CHIP, 60.4k, 1/16W, 1%, 0603	VISHAY, CRCW060360K4FKEA			
7	1	R20	RES, CHIP, 13.3k, 1/16W, 1%, 0603	VISHAY, CRCW060313K3FKEA			
8	1	U1	IC, LTM4622EV, LGA 25-6.25X6.25	LINEAR TECHNOLOGY, LTM4622EV#PBF			
Addition	Additional Demo Board Circuit Components						
2	1	C2	CAP, X5R, 10μF, 25V, 10%, 0805	TAIYO YUDEN, TMK212BBJ106KGHT			
4	3	C4, C6, C18	CAP, X5R, 1µF, 10V, 10%, 0603	MURATA, GRM188R61A105KA61D			
5	0	C8, C15, C22, C28	CAP, 0603	OPTION			
6	1	C10	CAP, X5R, 22µF, 25V, 10%, 7343	SANYO, 25TQC22MV			
10	0	C17, C25	CAP, 7343	OPTION			
18	1	Q1	XSTR, SUD50N04-8M8P-4GE3 MOSFET TO-252	VISHAY, SUD50N04-8M8P-4GE3			
19	1	RS1	RES, CHIP, 0.05Ω, 1/4W, 1%, 1206	VISHAY, WSL1206R0500FEA			
20	0	R2, R10, R12, R14, R16 T0 R19, R21, R22, R23, R26 T0 R29	CAP, 0603	OPTION			
21	1	R3	RES, CHIP, 10k, 1/16W, 1%, 0603	VISHAY, CRCW060310K0FKEA			
22	4	R9, R15, R24, R25	RES, CHIP, 100k, 1/16W, 1%, 0603	VISHAY, CRCW0603100KFKEA			
24	1	R13	RES, CHIP, 0, 1/16W, 1%, 0603	VISHAY, CRCW06030000Z0EA			
Hardware: For Demo Board Only							
13	14	E1 T0 E14	TESTPOINT, TURRET, 0.095"	MILL-MAX, 2501-2-00-80-00-00-07-0			
14	2	JP1, JP2	HEADER, 1X3 0.079	SULLINS, NRPN031PAEN-RC			
15	1	JP3	HEADER, 2X3 0.079	SULLINS, NRPN032PAEN-RC			
16	3	XJP1, XJP2, XJP3	SHUNT	SAMTEC 2SN-BK-G			
17	2	J1, J2	CONN, BNC, 5PINS	CONNEX, 112404			
28	4	STAND OFF	STAND OFF, SNAP ON, 0.375" TALL	KEYSTONE_8832			

SCHEMATIC DIAGRAM

DEMO MANUAL DC2249B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

